DOI QR코드

DOI QR Code

Identifying Responsive Functional Modules from Protein-Protein Interaction Network

  • Wu, Zikai (Institute of Systems Biology, Shanghai University) ;
  • Zhao, Xingming (Institute of Systems Biology, Shanghai University) ;
  • Chen, Luonan (Institute of Systems Biology, Shanghai University)
  • Received : 2009.01.23
  • Accepted : 2009.01.26
  • Published : 2009.03.31

Abstract

Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China (NSFC), Shanghai University, Shanghai Education Committee

References

  1. Adamcsek, B., Palla, G., Farkas, I., Derenyi, I., and Vicsek, T.(2006). Cfinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021-1023 https://doi.org/10.1093/bioinformatics/btl039
  2. Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., and Westbrooks, K. (2007). A novel method for signal transduction network inference from indirect experimental evidence. J. Comput. Biol. 14, 927-949 https://doi.org/10.1089/cmb.2007.0015
  3. Alon, N., Yuster, R., and Zwick, U. (1995). Color-coding. J. ACM. 42, 844-856 https://doi.org/10.1145/210332.210337
  4. Arga, K., Onsan, Z., Kiidar, B., Olgen, K., and Nielsen, J. (2007). Understanding signaling in yeast: insights from network analysis. Biotechnol. Bioeng. 97, 1246-1258 https://doi.org/10.1002/bit.21317
  5. Backes, C., Keller, A., Kuentzer, J., Kneissl, B., Comtesse, N., Elnakady, Y., Muller, R., Meese, E., and Lenhof, H. (2007). GeneTrail-advanced gene set enrichment analysis. Nucleic Acids Res. 35, W186-W192 https://doi.org/10.1093/nar/gkm323
  6. Bader, G., and Hogue, C. (2003). An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics 4, 2 https://doi.org/10.1186/1471-2105-4-2
  7. Barabasi., A.L., and OltVai, Z.N. (2004). Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101-113 https://doi.org/10.1038/nrg1272
  8. Bebek, G., and Yang, J. (2007). Pathfinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 8, 335 https://doi.org/10.1186/1471-2105-8-335
  9. Bild, A., and Febbo, P. (2005). Application of a priori established gene sets to discover biologically important differential expression in microarray data. Proc. Natl. Acad. Sci. USA 102, 15278-15279 https://doi.org/10.1073/pnas.0507477102
  10. Cabusora, L., Sutton, E., Fulmer, A., and Forst, C. (2005). Differential network expression during drug and stress response. Biofinromatics 21, 2898-2905 https://doi.org/10.1093/bioinformatics/bti440
  11. Chen, X., Wang, L., Smith, J., and Zhang, P. (2008). Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics 24, 2474-2481 https://doi.org/10.1093/bioinformatics/btn458
  12. Chen, L., Wang, R., and Zhang, X.S. (2009). Biomolecular networks: methods and applications in systems biology (New Jersey, USA: Wiley Interscience)
  13. Cho, Y., Hwang, W., Ramanathan, M., and Zhang, A. (2007). Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics 8, 265 https://doi.org/10.1186/1471-2105-8-265
  14. Chu, W., and Ghahramani, Z. (2006). Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model. Pacific Symposium on Biocomputing 11, 231-242
  15. Chu, H., and Chen, B. (2008). Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst. Biol. 2, 56 https://doi.org/10.1186/1752-0509-2-56
  16. Chuang, H., Lee, E., Liu, Y., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 https://doi.org/10.1038/msb4100180
  17. Dittrich, M., Klau, G., Rosenwald, A., Dandekarand, T., and Muller, T. (2008). Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, i223-i231 https://doi.org/10.1093/bioinformatics/btn161
  18. Guo, Z., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., et al. (2007). Edge-based scoring and searching method for identifying condition-responsive proteinprotein interaction sub-network. Bioinformatics 23, 2121-2128 https://doi.org/10.1093/bioinformatics/btm294
  19. Han, J., Bertin, N., Hao, T., Goldberg, D., Berriz, G., Zhang, L., Dupuy, D., Walhout, A., Cusick, M., Roth, F., et al. (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88-93 https://doi.org/10.1038/nature02555
  20. Hirsh, E., and Sharan, R. (2006). Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 23, e170-e176 https://doi.org/10.1093/bioinformatics/btl295
  21. Holden, M., Deng, S., Wojnowski, L., and Kulle, B. (2008). GSEASNP: applying gene set enrichment analysis to SNP data from genome-wide association studies. Bioinformatics 24, 2784-2785 https://doi.org/10.1093/bioinformatics/btn516
  22. Huang, R., Wallqvist, A., and Covell, D. (2006). Targeting changes in cancer: assessing pathway stability by comparing pathway gene expression coherence levels in tumor and normal tissues. Mol. Cancer Ther. 5, 2417-2427 https://doi.org/10.1158/1535-7163.MCT-06-0239
  23. Hwang, W., Cho, Y., Zhang, A., and Ramanathan, M. (2006). A novel functional module detection algorithm for protein-protein interaction networks. Algorithms Mol. Biol. 1, 24 https://doi.org/10.1186/1748-7188-1-24
  24. Ideker, T., and Sharan, R. (2008). Protein networks in disease. Genome Res. 18, 644-652 https://doi.org/10.1101/gr.071852.107
  25. Ideker, T., Ozier, O., schwikowski, B., and Siegel, A. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18, S233-S240 https://doi.org/10.1093/bioinformatics/18.suppl_1.S233
  26. Jansen, R., Greenbaum, D., and Gerstein, M. (2002). Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37-46 https://doi.org/10.1101/gr.205602
  27. Kann, M. (2007). Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief. Bioinform. 8, 333-346 https://doi.org/10.1093/bib/bbm031
  28. King, A., Przulj, N., and Jurisica, I. (2004). Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013-3020 https://doi.org/10.1093/bioinformatics/bth351
  29. Li, S., Assmann, S., and Albert, R. (2006). Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4, e312 https://doi.org/10.1371/journal.pbio.0040312
  30. Liu, Y., and Zhao, H. (2004). A computational approach for ordering signal transduction pathway components from genomics and proteomics data. BMC Bioinformatics 5, 158 https://doi.org/10.1186/1471-2105-5-158
  31. Liu, M., Liberzon, A., Kong, S., Lai, W., Park, P., Kohane, I., and Kasif, S. (2007). Network-based analysis of affected biological processes in type 2 diabetes models. PLOS Genet. 3, e96 https://doi.org/10.1371/journal.pgen.0030096
  32. Mete, M., Tang, F., Xu, X., and Yuruk, N. (2008). A structural approach for finding functional modules from large biological networks. BMC Bioinformatics 9, S19 https://doi.org/10.1186/1471-2105-9-S9-S19
  33. Murali, T., and Rivera, C. (2008). Network legos: buiding blocks of cellular wiring diagrams. J. Comput. Biol. 15, 829-844 https://doi.org/10.1089/cmb.2007.0139
  34. Nacu, S., Critchley-Thorne, R., Lee, P., and Holmes, S. (2007). Gene expression network analysis and applications to immunology. Bioinformatics 23, 850-858 https://doi.org/10.1093/bioinformatics/btm019
  35. Nettleton, D., Recknor, J., and Reecy, J. (2008). Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis. Bioinformatics 24, 192-201 https://doi.org/10.1093/bioinformatics/btm583
  36. Noisel, J., Sanguinetti, G., and Wright, P. (2008). Identifying differentially-expressed subnetworks with MMG. Bioinformatics 24, 2792-2793 https://doi.org/10.1093/bioinformatics/btn499
  37. Oron, A., Jiang, Z., and Gentleman, R. (2008). Gene set enrichment analysis using linear models and diagnostics. Bioinformatics 24, 2586-2591 https://doi.org/10.1093/bioinformatics/btn465
  38. Pereira-Leal, J., Enright, A., and Ouzounis, C. (2004). Detection of functional modules from protein interaction networks. Proteins 54, 49-57 https://doi.org/10.1002/prot.10505
  39. Qi, Y., Balem, F., Faloutsos, C., Klein-Seetharaman, J., and Bar-Joseph, Z. (2008). Protein complex identification by supervised graph local clustering. Bioinformatics 24, i250-i258 https://doi.org/10.1093/bioinformatics/btn164
  40. Qiu, Y., and Zhang, S. (2008). Uncovering Differentially expressed Pathways with protein Interation and gene expression data. Lecture Notes in Operations Res. 9, 74-82
  41. Qiu, Y., Zhang, S., Zhang, X-S., and Chen, L. (2009). Identifying differentially expressed pathways by high throughput data. IET Syst. Biol. (in press)
  42. Rahnenfuhrer, J., Domingues, F., Maydt, J., and Lengauer, T. (2004). Calculating the statistical significance of changes in pathway activity from gene expression data. Stat. Appl. Gen. Mol. Biol. 3, Article 16 https://doi.org/10.2202/1544-6115.1055
  43. Rajagopalan, D., and Agarwal, P. (2005). Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 21, 788-793 https://doi.org/10.1093/bioinformatics/bti069
  44. Scholtens, D., Vidal, M., and Gentleman, R. (2005). Local modeling of global interactome networks. Bioinformatics 21, 3548-3557 https://doi.org/10.1093/bioinformatics/bti567
  45. Scott, M., Perkins, T., Bunnell, S., Pepin, F., Thomas, D., and Hallett, M. (2005). Identifying regulatory subnetworks for a set of genes. Mol. Cell. Proteomics 4, 683-692 https://doi.org/10.1074/mcp.M400110-MCP200
  46. Scott, J., Ideker, T., Karp, R., and Sharan, R. (2006). Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133-144 https://doi.org/10.1089/cmb.2006.13.133
  47. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., and Karp, R.M. (2005). Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 12, 835-846 https://doi.org/10.1089/cmb.2005.12.835
  48. Sohler, F., Hanisch, D., and Zimmer, R. (2004). New methods for joint analysis of biological networks and expression data. Bioinformatics 20, 1517-1521 https://doi.org/10.1093/bioinformatics/bth112
  49. Spirin, V., and Mirny, L. (2003). Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. USA 100, 12123-12128 https://doi.org/10.1073/pnas.2032324100
  50. Steffen, M., Petti, A., Aach, J., D'haeseleer, P., and Church, G. (2002). Automated modelling of signal transduction networks. BMC Bioinformatics 3, 34 https://doi.org/10.1186/1471-2105-3-34
  51. Subramaniana, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., et al. (2005). Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545-15550 https://doi.org/10.1073/pnas.0506580102
  52. Suderman, M., and Michael, H. (2007). Tools for visually exploring biological networks. Bioinformatics 23, 2651-2659 https://doi.org/10.1093/bioinformatics/btm401
  53. Turanalp, M., and Can, T. (2008). Discovering functional interaction patterns in protein-protein interaction networks. BMC Bioinformatics 9, 276 https://doi.org/10.1186/1471-2105-9-276
  54. Ulitsky, I., Karp, M., and Shamir, R. (2008). Detecting diseasespecific dysregulated pathways via analysis of clinical expression profiles. Lect. N. Bioinformat. (RECOMB2008) 4955, 347-359 https://doi.org/10.1007/978-3-540-78839-3_30
  55. Wang, Y., and Xia, Y. (2008). Condition specific subnetwork identification using an optimization model. Lecture Notes in Operations Res. 9, 333-340
  56. Wang, R., Zhang, S., Zhang, X., and Chen, L. (2006). Identifying modules in complex networks by a graph-theoretical method and its application in protein interaction networks. Lect. N. Bioinformat. 4682, 1090-1101
  57. Watts, D., and Atrogatz, S. (1998). Collective dynamics of 'small word' networks. Nature 393, 440-442 https://doi.org/10.1038/30918
  58. Zhang, S., Ning, X., and Zhang, X. (2006). Identification of functional modules in a PPI network by clique percolaion clusering. Comput. Biol. Chem. 30, 445-451 https://doi.org/10.1016/j.compbiolchem.2006.10.001
  59. Zhang, S., Jin, G., Zhang, X., and Chen, L. (2007). Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7, 2856-2869 https://doi.org/10.1002/pmic.200700095
  60. Zhao, X., Wang, R., Chen, L., and Aihara, K. (2008a). Automatic modeling of signal pathways from protein-protein interaction networks. In A., Brazma, S., Miyano, and T., Akutsu, eds., Proceedings of The 6th Asia Pacific Bioinformatics Conference, Vol. 6 of Serias on advances in bioinformatics and computational biology Imperial College Press, Singapore, 287-296
  61. Zhao, X., Wang, R., Chen, L., and Aihara, K. (2008b). Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res. 36, e48 https://doi.org/10.1093/nar/gkn145
  62. Zhao, X., Wang, R., Chen, L., and Aihara, K. (2009). Automatic modeling of signaling pathways based on network flow model. J. Bioinformat. Computational Biol. (in press)

Cited by

  1. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2105-11-174
  2. A systems biology approach to identify effective cocktail drugs vol.4, pp.suppl2, 2009, https://doi.org/10.1186/1752-0509-4-s2-s7
  3. ExprEssence - Revealing the essence of differential experimental data in the context of an interaction/regulation net-work vol.4, pp.None, 2010, https://doi.org/10.1186/1752-0509-4-164
  4. Identification of responsive gene modules by network-based gene clustering and extending: application to inflammation and angiogenesis vol.4, pp.None, 2009, https://doi.org/10.1186/1752-0509-4-47
  5. Transcriptomic Coordination in the Human Metabolic Network Reveals Links between n-3 Fat Intake, Adipose Tissue Gene Expression and Metabolic Health vol.7, pp.11, 2011, https://doi.org/10.1371/journal.pcbi.1002223
  6. Tools for protein-protein interaction network analysis in cancer research vol.14, pp.1, 2009, https://doi.org/10.1007/s12094-012-0755-9
  7. Network-based analysis of complex diseases vol.6, pp.1, 2009, https://doi.org/10.1049/iet-syb.2010.0052
  8. Sensitive detection of pathway perturbations in cancers vol.13, pp.suppl3, 2012, https://doi.org/10.1186/1471-2105-13-s3-s9
  9. A semi-supervised boosting SVM for predicting hot spots at protein-protein Interfaces vol.6, pp.suppl2, 2009, https://doi.org/10.1186/1752-0509-6-s2-s6
  10. Modular pharmacology: the next paradigm in drug discovery vol.7, pp.8, 2012, https://doi.org/10.1517/17460441.2012.692673
  11. Virtual Interactomics of Proteins from Biochemical Standpoint vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/976385
  12. Network-based drug repositioning vol.9, pp.6, 2009, https://doi.org/10.1039/c3mb25382a
  13. Integrative approaches for finding modular structure in biological networks vol.14, pp.10, 2009, https://doi.org/10.1038/nrg3552
  14. Tamoxifen Integromics and Personalized Medicine: Dynamic Modular Transformations Underpinning Response to Tamoxifen in Breast Cancer Treatment vol.18, pp.1, 2014, https://doi.org/10.1089/omi.2013.0055
  15. Exploration of Potential Roles of a New LOXL2 Splicing Variant Using Network Knowledge in Esophageal Squamous Cell Carcinoma vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/431792
  16. Spatiotemporal positioning of multipotent modules in diverse biological networks vol.71, pp.14, 2009, https://doi.org/10.1007/s00018-013-1547-2
  17. ModuleBlast: identifying activated sub-networks within and across species vol.43, pp.3, 2009, https://doi.org/10.1093/nar/gku1224
  18. Quantitative assessment of gene expression network module-validation methods vol.5, pp.None, 2015, https://doi.org/10.1038/srep15258
  19. An efficient method for protein function annotation based on multilayer protein networks vol.10, pp.1, 2009, https://doi.org/10.1186/s40246-016-0087-x
  20. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features vol.7, pp.14, 2016, https://doi.org/10.18632/oncotarget.7695
  21. Mutual Interactions between Aquaporins and Membrane Components vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.01322
  22. Identification of Novel Pathways in Plant Lectin-Induced Cancer Cell Apoptosis vol.17, pp.2, 2009, https://doi.org/10.3390/ijms17020228
  23. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways vol.12, pp.2, 2009, https://doi.org/10.1371/journal.pcbi.1004738
  24. Rhizoma Dioscoreae extract protects against alveolar bone loss by regulating the cell cycle: A predictive study based on the protein-protein interaction network vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5188
  25. XGBPRH: Prediction of Binding Hot Spots at Protein–RNA Interfaces Utilizing Extreme Gradient Boosting vol.10, pp.3, 2009, https://doi.org/10.3390/genes10030242
  26. Mechanism of tanshinones and phenolic acids from Danshen in the treatment of coronary heart disease based on co-expression network vol.20, pp.1, 2020, https://doi.org/10.1186/s12906-019-2712-4