Browse > Article
http://dx.doi.org/10.1007/s10059-009-0035-x

Identifying Responsive Functional Modules from Protein-Protein Interaction Network  

Wu, Zikai (Institute of Systems Biology, Shanghai University)
Zhao, Xingming (Institute of Systems Biology, Shanghai University)
Chen, Luonan (Institute of Systems Biology, Shanghai University)
Abstract
Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.
Keywords
optimization; protein-protein interaction network; responsive functional module; signaling pathway; systems biology;
Citations & Related Records

Times Cited By Web Of Science : 13  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Chen, X., Wang, L., Smith, J., and Zhang, P. (2008). Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics 24, 2474-2481   DOI   PUBMED   ScienceOn
2 Chuang, H., Lee, E., Liu, Y., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140   DOI   PUBMED
3 Han, J., Bertin, N., Hao, T., Goldberg, D., Berriz, G., Zhang, L., Dupuy, D., Walhout, A., Cusick, M., Roth, F., et al. (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88-93   DOI   PUBMED   ScienceOn
4 Holden, M., Deng, S., Wojnowski, L., and Kulle, B. (2008). GSEASNP: applying gene set enrichment analysis to SNP data from genome-wide association studies. Bioinformatics 24, 2784-2785   DOI   PUBMED   ScienceOn
5 Ideker, T., and Sharan, R. (2008). Protein networks in disease. Genome Res. 18, 644-652   DOI   PUBMED   ScienceOn
6 King, A., Przulj, N., and Jurisica, I. (2004). Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013-3020   DOI   PUBMED   ScienceOn
7 Li, S., Assmann, S., and Albert, R. (2006). Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4, e312   DOI   PUBMED   ScienceOn
8 Liu, M., Liberzon, A., Kong, S., Lai, W., Park, P., Kohane, I., and Kasif, S. (2007). Network-based analysis of affected biological processes in type 2 diabetes models. PLOS Genet. 3, e96   DOI   PUBMED   ScienceOn
9 Murali, T., and Rivera, C. (2008). Network legos: buiding blocks of cellular wiring diagrams. J. Comput. Biol. 15, 829-844   DOI   PUBMED   ScienceOn
10 Nacu, S., Critchley-Thorne, R., Lee, P., and Holmes, S. (2007). Gene expression network analysis and applications to immunology. Bioinformatics 23, 850-858   DOI   PUBMED   ScienceOn
11 Oron, A., Jiang, Z., and Gentleman, R. (2008). Gene set enrichment analysis using linear models and diagnostics. Bioinformatics 24, 2586-2591   DOI   PUBMED   ScienceOn
12 Pereira-Leal, J., Enright, A., and Ouzounis, C. (2004). Detection of functional modules from protein interaction networks. Proteins 54, 49-57   DOI   PUBMED   ScienceOn
13 Rahnenfuhrer, J., Domingues, F., Maydt, J., and Lengauer, T. (2004). Calculating the statistical significance of changes in pathway activity from gene expression data. Stat. Appl. Gen. Mol. Biol. 3, Article 16   DOI   PUBMED
14 Scholtens, D., Vidal, M., and Gentleman, R. (2005). Local modeling of global interactome networks. Bioinformatics 21, 3548-3557   DOI   PUBMED   ScienceOn
15 Scott, M., Perkins, T., Bunnell, S., Pepin, F., Thomas, D., and Hallett, M. (2005). Identifying regulatory subnetworks for a set of genes. Mol. Cell. Proteomics 4, 683-692   DOI   ScienceOn
16 Wang, Y., and Xia, Y. (2008). Condition specific subnetwork identification using an optimization model. Lecture Notes in Operations Res. 9, 333-340
17 Watts, D., and Atrogatz, S. (1998). Collective dynamics of 'small word' networks. Nature 393, 440-442   DOI   PUBMED   ScienceOn
18 Nettleton, D., Recknor, J., and Reecy, J. (2008). Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis. Bioinformatics 24, 192-201   DOI   PUBMED   ScienceOn
19 Zhao, X., Wang, R., Chen, L., and Aihara, K. (2008b). Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res. 36, e48   DOI   PUBMED   ScienceOn
20 Spirin, V., and Mirny, L. (2003). Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. USA 100, 12123-12128   DOI   PUBMED   ScienceOn
21 Qiu, Y., Zhang, S., Zhang, X-S., and Chen, L. (2009). Identifying differentially expressed pathways by high throughput data. IET Syst. Biol. (in press)
22 Suderman, M., and Michael, H. (2007). Tools for visually exploring biological networks. Bioinformatics 23, 2651-2659   DOI   PUBMED   ScienceOn
23 Alon, N., Yuster, R., and Zwick, U. (1995). Color-coding. J. ACM. 42, 844-856   DOI   ScienceOn
24 Cabusora, L., Sutton, E., Fulmer, A., and Forst, C. (2005). Differential network expression during drug and stress response. Biofinromatics 21, 2898-2905   DOI   PUBMED   ScienceOn
25 Cho, Y., Hwang, W., Ramanathan, M., and Zhang, A. (2007). Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics 8, 265   DOI   PUBMED
26 Rajagopalan, D., and Agarwal, P. (2005). Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 21, 788-793   DOI   PUBMED   ScienceOn
27 Bebek, G., and Yang, J. (2007). Pathfinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 8, 335   DOI   PUBMED
28 Adamcsek, B., Palla, G., Farkas, I., Derenyi, I., and Vicsek, T.(2006). Cfinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021-1023   DOI   PUBMED   ScienceOn
29 Chu, W., and Ghahramani, Z. (2006). Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model. Pacific Symposium on Biocomputing 11, 231-242   PUBMED
30 Qiu, Y., and Zhang, S. (2008). Uncovering Differentially expressed Pathways with protein Interation and gene expression data. Lecture Notes in Operations Res. 9, 74-82
31 Steffen, M., Petti, A., Aach, J., D'haeseleer, P., and Church, G. (2002). Automated modelling of signal transduction networks. BMC Bioinformatics 3, 34   DOI   PUBMED
32 Backes, C., Keller, A., Kuentzer, J., Kneissl, B., Comtesse, N., Elnakady, Y., Muller, R., Meese, E., and Lenhof, H. (2007). GeneTrail-advanced gene set enrichment analysis. Nucleic Acids Res. 35, W186-W192   DOI   PUBMED
33 Wang, R., Zhang, S., Zhang, X., and Chen, L. (2006). Identifying modules in complex networks by a graph-theoretical method and its application in protein interaction networks. Lect. N. Bioinformat. 4682, 1090-1101
34 Liu, Y., and Zhao, H. (2004). A computational approach for ordering signal transduction pathway components from genomics and proteomics data. BMC Bioinformatics 5, 158   DOI   PUBMED   ScienceOn
35 Zhang, S., Ning, X., and Zhang, X. (2006). Identification of functional modules in a PPI network by clique percolaion clusering. Comput. Biol. Chem. 30, 445-451   DOI   PUBMED   ScienceOn
36 Chen, L., Wang, R., and Zhang, X.S. (2009). Biomolecular networks: methods and applications in systems biology (New Jersey, USA: Wiley Interscience)
37 Zhao, X., Wang, R., Chen, L., and Aihara, K. (2008a). Automatic modeling of signal pathways from protein-protein interaction networks. In A., Brazma, S., Miyano, and T., Akutsu, eds., Proceedings of The 6th Asia Pacific Bioinformatics Conference, Vol. 6 of Serias on advances in bioinformatics and computational biology Imperial College Press, Singapore, 287-296
38 Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., and Westbrooks, K. (2007). A novel method for signal transduction network inference from indirect experimental evidence. J. Comput. Biol. 14, 927-949   DOI   PUBMED   ScienceOn
39 Noisel, J., Sanguinetti, G., and Wright, P. (2008). Identifying differentially-expressed subnetworks with MMG. Bioinformatics 24, 2792-2793   DOI   PUBMED   ScienceOn
40 Qi, Y., Balem, F., Faloutsos, C., Klein-Seetharaman, J., and Bar-Joseph, Z. (2008). Protein complex identification by supervised graph local clustering. Bioinformatics 24, i250-i258   DOI   PUBMED   ScienceOn
41 Ideker, T., Ozier, O., schwikowski, B., and Siegel, A. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18, S233-S240   DOI
42 Arga, K., Onsan, Z., Kiidar, B., Olgen, K., and Nielsen, J. (2007). Understanding signaling in yeast: insights from network analysis. Biotechnol. Bioeng. 97, 1246-1258   DOI   PUBMED   ScienceOn
43 Dittrich, M., Klau, G., Rosenwald, A., Dandekarand, T., and Muller, T. (2008). Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, i223-i231   DOI   PUBMED   ScienceOn
44 Mete, M., Tang, F., Xu, X., and Yuruk, N. (2008). A structural approach for finding functional modules from large biological networks. BMC Bioinformatics 9, S19   DOI   PUBMED   ScienceOn
45 Jansen, R., Greenbaum, D., and Gerstein, M. (2002). Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37-46   DOI   PUBMED   ScienceOn
46 Zhang, S., Jin, G., Zhang, X., and Chen, L. (2007). Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7, 2856-2869   DOI   PUBMED   ScienceOn
47 Guo, Z., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., et al. (2007). Edge-based scoring and searching method for identifying condition-responsive proteinprotein interaction sub-network. Bioinformatics 23, 2121-2128   DOI   PUBMED   ScienceOn
48 Subramaniana, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., et al. (2005). Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545-15550   DOI   PUBMED   ScienceOn
49 Zhao, X., Wang, R., Chen, L., and Aihara, K. (2009). Automatic modeling of signaling pathways based on network flow model. J. Bioinformat. Computational Biol. (in press)
50 Chu, H., and Chen, B. (2008). Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst. Biol. 2, 56   DOI   PUBMED   ScienceOn
51 Ulitsky, I., Karp, M., and Shamir, R. (2008). Detecting diseasespecific dysregulated pathways via analysis of clinical expression profiles. Lect. N. Bioinformat. (RECOMB2008) 4955, 347-359   DOI   ScienceOn
52 Barabasi., A.L., and OltVai, Z.N. (2004). Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101-113   DOI   PUBMED   ScienceOn
53 Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., and Karp, R.M. (2005). Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol. 12, 835-846   DOI   PUBMED   ScienceOn
54 Sohler, F., Hanisch, D., and Zimmer, R. (2004). New methods for joint analysis of biological networks and expression data. Bioinformatics 20, 1517-1521   DOI   PUBMED   ScienceOn
55 Scott, J., Ideker, T., Karp, R., and Sharan, R. (2006). Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133-144   DOI   PUBMED   ScienceOn
56 Turanalp, M., and Can, T. (2008). Discovering functional interaction patterns in protein-protein interaction networks. BMC Bioinformatics 9, 276   DOI   PUBMED   ScienceOn
57 Bader, G., and Hogue, C. (2003). An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics 4, 2   DOI   PUBMED
58 Hirsh, E., and Sharan, R. (2006). Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 23, e170-e176   DOI   PUBMED   ScienceOn
59 Huang, R., Wallqvist, A., and Covell, D. (2006). Targeting changes in cancer: assessing pathway stability by comparing pathway gene expression coherence levels in tumor and normal tissues. Mol. Cancer Ther. 5, 2417-2427   DOI   PUBMED   ScienceOn
60 Hwang, W., Cho, Y., Zhang, A., and Ramanathan, M. (2006). A novel functional module detection algorithm for protein-protein interaction networks. Algorithms Mol. Biol. 1, 24   DOI   PUBMED
61 Bild, A., and Febbo, P. (2005). Application of a priori established gene sets to discover biologically important differential expression in microarray data. Proc. Natl. Acad. Sci. USA 102, 15278-15279   DOI   PUBMED   ScienceOn
62 Kann, M. (2007). Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief. Bioinform. 8, 333-346   DOI   PUBMED   ScienceOn