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Abstract
Due to the polygenic nature of cancer, it is believed that 
breast cancer is caused by the perturbation of multiple 
genes and their complex interactions, which contribute 
to the wide aspects of disease phenotypes. A systems 
biology approach for the identification of subnetworks of 
interconnected genes as functional modules is required 
to understand the complex nature of diseases such as 
breast cancer. In this study, we apply a 3-step strategy 
for the interpretation of microarray data, focusing on 
identifying significantly perturbed metabolic pathways 
rather than analyzing a large amount of overexpressed 
and underexpressed individual genes. The selected 
pathways are considered to be dysregulated functional 
modules that putatively contribute to the progression of 
disease. The subnetwork of protein-protein interactions 
for these dysregulated pathways are constructed for fur-
ther detailed analysis. We evaluated the method by ana-
lyzing microarray datasets of breast cancer tissues; i.e., 
normal and invasive breast cancer tissues. Using the 
strategy of microarray analysis, we selected several sig-
nificantly perturbed pathways that are implicated in the 
regulation of progression of breast cancers, including 
the extracellular matrix-receptor interaction pathway and 
the focal adhesion pathway. Moreover, these selected 
pathways include several known breast cancer-related 
genes. It is concluded from this study that the present 
strategy is capable of selecting interesting perturbed 
pathways that putatively play a role in the progression 
of breast cancer and provides an improved interpret-
ability of networks of protein-protein interactions.
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Introduction
Microarray experiments have been a popular approach 
for identifying marker genes that are related to the pro-
gression of disease by providing insights into ge-
nome-wide gene expression data. Conventional analysis 
of microarray data has focused on finding significantly 
overexpressed and underexpressed genes as putative 
markers of disease. This has been useful in discriminat-
ing the roles of various individual genes in the pro-
gression of disease and in correlating dissected ex-
pression signatures with clinical outcomes (Dhanasekar-
an et al., 2001; Beer et al., 2002; van’t Veer et al., 
2002; Glinsky et al., 2004). However, comparing ex-
pression data between normal and diseased conditions 
can typically yield thousands of genes that are differ-
entially expressed between the conditions with a stat-
istical confidence (p＜0.05) (Dhanasekaran et al., 2001). 
That is, the conventional method may not be sufficient 
to narrow down the target pathways and genes for dis-
criminating disease states, because only a few sig-
nificantly dysregulated candidates genes can be studied 
in detail at any given moment. Moreover, most proteins 
are known to mediate their functions within regulated 
complex networks or pathways of interconnected mac-
romolecules by forming dynamic topological interac-
tomes. Additionally, genes that are not significantly al-
tered may play a critical role with other significantly 
dysregulated components in their biological pathways. 
Therefore, a systems biology approach that can identify 
pathways with these proteins would significantly im-
prove the ability to find disease-associated genes from 
micorarray datasets. This also would be useful in under-
standing the relationship between pathways and various 
phenotypes.
  There has been a tremendous increase in information 
for constructing large-scale protein-protein interaction 
networks from public interactome databases, such as 
HPRD (Peri et al., 2004). A number of approaches have 
been demonstrated for identifying subnetworks of pro-
tein-protein interactions, based on coherent expression 
patterns of their genes (Chen and Yuan, 2006; Chuang 
et al., 2007). There also is a study that has identified 
candidate genes that are related to certain diseases 
based only on the topological features of the network of 
disease-related protein-protein interactions (Hwang et 
al., 2008). Recently, several methods for integrating mi-
croarray data with metabolic pathways have been pre-



Microarray Data Analysis of Perturbed Pathways  211

sented (Setlur et al., 2007; Grosu et al., 2008). None of 
these approaches has mapped transcriptional changes 
in both metabolic pathways and protein-protein 
interactions. Moreover, protein-protein interaction net-
works have very complex topological characteristics that 
sometimes impose difficulties in interpretation. There-
fore, it will be convenient for the interpretation if the 
functional modules that have significantly perturbed 
genes are first identified to construct a subnetwork of 
protein-protein interactions in each functional module. It 
is believed that these subnetworks of protein-protein in-
teractions in each functional module will provide greater 
interpretability than the genome-wide network of pro-
tein-protein interactions. Based on these points of view, 
we applied 3 steps of microarray data analysis. First, 
differentially expressed genes were selected using the 
standard t test. Second, significantly perturbed metabol-
ic pathways were selected based on those differentially 
expressed genes. A test for the statistical significance of 
the selected pathways also is presented in this study. 
Third, subnetworks of protein-protein interactions in 
those perturbed metabolic pathways were constructed 
for further interpretation of pathways in detail.
  Breast cancer is one of many complex progressive 
diseases. Due to its polygenic nature, it is believed that 
breast cancer is caused not by single genes but rather 
by perturbations of multiple genes and their complex in-
teractions, which contribute to the wide aspects of dis-
ease phenotypes. Therefore, we apply the strategy of 
microarray analysis using the “score of perturbation” to 
identify significantly perturbed pathways. To this end, 
we identified significantly perturbed pathways in breast 
cancer tissues, thereby providing interesting pathways 
that putatively play roles in the progression of breast 
cancer. Furthermore, we constructed a subnetwork of 
protein-protein interactions in these significantly per-
turbed pathways for further interpretation of pathways in 
detail.

Methods
We used the dataset from Turashvili et al. (2007), which 
consists of 2 types of breast cancer tissues; i.e, invasive 
lobular and ductal carcinomas. This dataset includes a 
total of 30 samples that consist of normal ductal cells 
from 10 patients, normal lobular cells from 10 patients, 
invasive ductal carcinoma cells from 5 patients, and in-
vasive lobular carcinoma cells from 5 patients, which 
were microdissected from cryosections of 10 mastec-
tomy specimens from postmenopausal patients. In this 
dataset, 50 nanograms of total RNA was amplified and 
labeled by PCR and in vitro transcription, and samples 
were analyzed using Affymetrix U133 Plus 2.0 Arrays. 

Pathways from KEGG (http://www.genome.jp/kegg/path-
way.html) databases were used as pathway references 
for analysis. 
  The basic idea of our approach is to identify per-
turbed pathways that have relatively large amounts of 
overexpressed or underexpressed genes. To begin, a p 
value that is calculated from the standard t test is as-
signed to every gene in each pathway, and the number 
of significantly perturbed genes (p＜0.01) is counted in 
each pathway. Note that the t test for each gene is 
conducted by comparing 2 mean values of gene ex-
pression between 20 samples of normal breast cancer 
cells and 10 samples of invasive cancer cells. The score 
of perturbation for each pathway is assigned with the 
probability that we can, by chance, expect at least the 
same number of significantly perturbed genes in each 
pathway, given the number of significantly perturbed 
genes in the background set of genes. This probability 
is calculated using the cumulative hypergeometric dis-
tribution as follows: 
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  where n is the number of genes in each pathway, N 
the number of genes in whole pathways, x the number 
of significantly perturbed genes in each pathway, and r 
is the number of significantly perturbed genes in whole 
pathways. The pathways that have p＜0.01 are selected 
as significantly perturbed genes in breast cancer 
tissues.

Results and Discussion
To explore perturbed pathways in breast cancer tissues, 
we analyzed the microarray dataset from Turashvilli et 
al. (2007), which was downloaded from the NCBI GEO 
(http://www.ncbi.nlm.nih.gov/geo/) database. The dataset 
was standardized such that each sample array has a 
mean of 0 and a standard deviation of 1. The dataset 
contains samples of 2 breast cancer tissues and their 
corresponding normal cells. The standard t test was 
used to score genes for overexpression or under-
expression in breast cancer tissues in comparison with 
their normal tissues. The list of significantly perturbed 
genes (p＜0.01) was classified into known biological 
pathways to select target pathways that are perturbed 
in breast cancer tissues, as described in Methods. As a 
result, it was found that 36 pathways were significantly 
perturbed, based on the score of perturbation (p＜0.01) 
in breast cancer tissues (see Supplementary Table S1). 
  Table 1 shows 36 significantly perturbed pathways, 
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Table 1. Top 36 perturbed pathways in which component genes are significantly perturbed (p＜0.01) in breast cancer tis-

sues

Pathway N1 N2 N3 N4 N5

Focal adhesion 199 19 16 35 5.08E-17

Cell junctions 134 12 17 29 1.09E-16

ECM-receptor interaction 87 15 7 22 2.44E-14

Systemic lupus erythematosus 125 23 1 24 1.05E-12

Regulation of actin cytoskeleton 217 11 14 25 2.91E-08

Axon guidance 129 8 7 15 1.94E-05

Prostate cancer 91 6 6 12 3.91E-05

Drug metabolism - cytochrome P450 67 2 8 10 6.05E-05

Colorectal cancer 85 3 8 11 9.90E-05

Cytokine-cytokine receptor interaction 273 7 14 21 0.00023

p53 signaling pathway 68 4 5 9 0.000365

Cell cycle 115 9 3 12 0.000384

Cell adhesion molecules (CAMs) 132 7 6 13 0.000388

Renal cell carcinoma 69 5 4 9 0.000408

Melanoma 71 5 4 9 0.000506

Glutathione metabolism 47 1 6 7 0.000812

Metabolism of xenobiotics by cytochrome P450 65 2 6 8 0.001268

Leukocyte transendothelial migration 116 7 4 11 0.001501

alpha-Linolenic acid metabolism 17 1 3 4 0.002006

Toll-like receptor signaling pathway 104 7 3 10 0.002214

Small cell lung cancer 87 5 4 9 0.002215

Bladder cancer 42 4 2 6 0.002405

Pancreatic cancer 73 5 3 8 0.002697

MAPK signaling pathway 269 5 13 18 0.003258

Vibrio cholerae infection 60 4 3 7 0.003474

Adherens junction 76 3 5 8 0.003477

Tight junction 135 3 8 11 0.004968

Glioma 65 4 3 7 0.005453

GnRH signaling pathway 100 5 4 9 0.005691

Biosynthesis of unsaturated fatty acids 23 1 3 4 0.00639

PPAR signaling pathway 68 2 5 7 0.006989

Nitrogen metabolism 24 1 3 4 0.007472

Complement and coagulation cascades 69 2 5 7 0.007566

TGF-beta signaling pathway 87 4 4 8 0.007923

Non-small cell lung cancer 54 4 2 6 0.008535

Neurodegenerative diseases 39 2 3 5 0.008856

Note that N1 represents the total number of genes in each pathway, N2 is the number of overexpressed genes (p＜0.01) 

in each pathway, N3 is the number of underexpressed genes (p＜0.01) in each pathway, N4 is the total number of sig-

nificantly perturbed genes in each pathway (i.e., N4=N2+N3 ), and N5 is the score of perturbation; i.e., p-values by the cu-

mulative hypergeometric distribution.

including Cell Junctions (Fig. 1), the ECM-receptor inter-
action pathway (Fig. 2), the Focal Adhesion pathway 
(Fig. 3), and the p53 signaling pathway, which have 
been implicated to play a role in the progression of 
breast cancers (Behmoaram et al., 2008; Fata et al., 
2004; Lin et al., 2000; Ryan et al., 2000). It is well 
known that most cancers lack active tumor suppressor 
p53, which inhibits cell growth through activation of cell 
cycle arrest and apoptosis and that the activation of 
NFKB1 is induced by p53 (Ryan et al., 2000).
  There are significant amounts of evidence that the 
ECM-receptor pathway is related to the progression of 

breast cancer. For instance, Fata et al. (2004) reviewed 
considerable research that indicated that mammary 
gland branching morphogenesis is dependent, in part, 
on the ECM; ECM-receptors, such as integrins and oth-
er ECM receptors; and ECM-degrading enzymes, includ-
ing matrix metalloproteinases (MMPs) and their in-
hibitors, tissue inhibitors of metalloproteinases (TIMPs). 
They also provided some evidence that these ECM 
processes affect 1 or more of the following processes: 
cell survival, polarity, proliferation, differentiation, adhe-
sion, and migration.
  It is well known that breast carcinoma most often is 
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Fig. 1. Summary of the Cell 

Junctions pathway from the KEGG 

(h t tp : / /www.genome. jp /kegg ) 

database. Grey-colored boxes rep-

resent protein complexes with at 

least 1 significantly perturbed pro-

tein (p＜0.01) in breast cancer tis-

sues. Note that the list of perturbed 

genes is tabulated in Table 2.

Fig. 2. Summary of the ECM-re-
ceptor Interaction pathway from 

the KEGG (http://www.genome.jp/

kegg) database. Grey-colored box-

es represent protein complexes 

with at least 1 significantly per-

turbed protein (p＜0.01) in breast 

cancer tissues. Note that the list 

of perturbed genes is tabulated in 

Table 2.

associated with an extensive ‘stromal reaction’, termed 
desmoplasia, in which excess collagen is deposited 
(Fata et al., 2004). It also has been shown that aberra-
tions in the integrity, deposition, and composition of the 
ECM often are associated with breast cancer (Lochter 
and Bissell, 1995; Petersen et al., 2001).
  In addition, upregulation of expression of the fibrillar 

collagen gene is an indicator of the metastatic pheno-
type (van't Veer et al., 2002; van de Vijver et al., 2002; 
Wang et al., 2002). The ECM and its receptors that at-
tenuate or augment signaling regulate branching mor-
phogenesis in a process that may be considered as 
controlled invasion. For instance, it has been shown that 
increased collagen type I upregulates activated MMP 2 
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Table 2. List of significantly perturbed genes (p＜0.01) in the Cell Junctions, ECM-receptor interactions, and Focal Adhesion
pathways

Genes Path1 Path2 Path3 Genes Path1 Path2 Path3

COL11A1 △ △ △ KRT16 ▽

COL1A1 △ △ △ KRT17 ▽

COL1A2 △ △ △ KRT23 ▽

COL3A1 △ △ △ KRT5 ▽

COL4A1 △ △ △ KRT6B ▽

COL5A1 △ △ △ KRT7 ▽

COL5A2 △ △ △ KRT81 ▽

COL6A1 △ △ △ FNDC1 △

COL6A3 △ △ △ FNDC3A △

COMP △ △ △ HMMR △

THBS2 △ △ △ CAV1 ▽

FN1 △ △ △ ACTN1 ▽

LAMB3 ▽ ▽ ▽ ARHGAP5 ▽

LAMC2 ▽ ▽ ▽ DOCK1 △

TNR ▽ ▽ ▽ EGFR ▽

ITGB4 ▽ ▽ ▽ JUN ▽

ITGA2 ▽ ▽ MET ▽

ITGA3 ▽ ▽ MYL9 ▽

ITGB8 ▽ ▽ MYLK ▽

COL17A1 ▽ PARVB △

DSC3 ▽ PDGFB △

DSG3 ▽ PDGFRA ▽

DSG4 ▽ PIK3CB △

KRT14 ▽ VEGFA △

KRT15 ▽

△ corresponds to significantly overexpressed genes and ▽ to significantly underexpressed genes. Note that Path1
represents the Cell Junctions pathway, Path2 is the ECM-receptor interactions pathway, and Path3 is the Focal 
Adhesion pathway. It is noteworthy that there are several genes that are involved in more than 1 pathway, allowing 
crosstalk between pathways.

Fig. 3. Summary of the Focal Adhesion pathway from the KEGG (http://www.genome.jp/kegg) database. Grey-colored boxes

represent protein complexes with at least 1 significantly perturbed protein (p＜0.01) in breast cancer tissues. Note that the 

list of perturbed genes is tabulated in Table 2.
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(A) (B)

Fig. 4. (A) Subnetwork of protein-protein interactions in the Cell Junctions pathway. The rectangular boxes with dashed lines

represent the protein complexes of IF, Actin, ITGB4, ITGA6, and BP180, respectively (see Fig. 1). (B) Subnetwork of pro-

tein-protein interactions in both the ECM-receptor Interaction and Focal Adhesion pathways. The rectangular boxes with 

dashed lines represent the protein complexes of ECM, ITGA, and ITGB, respectively (see Fig. 3). Note that 3 protein com-

plexes in (B) can be subdivided into smaller protein complexes based on the definition of the ECM-receptor pathway (Fig.

2). Note also that grey-colored nodes represent significantly perturbed genes (p＜0.01) in breast cancer tissues.

in human metastatic breast cancer cells (Thompson et 
al., 1994). Other collagens, such as types III, V, and VII, 
also are altered with regard to expression and deposi-
tion in breast cancer (Barsky et al., 1982; Fukuda et al., 
2000; Lagace et al., 1985; Wetzels et al., 1991), trigger-
ing signals that lead to the loss of structure and func-
tion in breast.
  There also are several indications that the focal adhe-
sion pathway is related to the progression of breast 
cancer. For instance, Lin et al. (2000) reported a direct 
effect of progesterone in inducing the spread and adhe-
sion of breast cancer cells, with the conclusion that pro-
gesterone-induced cell spreading and focal adhesion 
may have significant implications in breast tumor 
metastasis. In addition, there is crosstalk between the 
ECM-receptor pathway and the focal adhesion pathway, 
in which several proteins bind to form ECMs that bind 
to their receptors, triggering signaling cascades within 
the focal adhesion pathway and leading to cell motility, 
cell proliferation, and cell survival (Fig. 2, 3).
  Table 2 shows overexpressed and underexpressed 
genes in Cell Junctions, the ECM-receptor interaction 
pathway, and the Focal Adhesion pathway, including 
THBS2, PDGF, COL1A1, COLA2, COL3A1, COL5A1, 
and COL5A2. There are several indications that these 
genes are associated with cancer. For instance, THBS2 
has been shown to function as a potent inhibitor of tu-
mor growth and angiogenesis (Potikyan et al., 2007; 

Hawighorst et al., 2001). PDGF is known to activate the 
RAS/PIK3/AKT1/IKK/NFKB1 pathway, in which NFKB1 
induces putative antiapoptotic genes (Romashkova et 
al., 1999). Collagen type I (COL1A1, COL1A2), type III 
(COL3A1), and type V (COL5A1, COL5A2) are implicated 
in playing roles in the progression of metastatic breast 
cancer (Barsky et al., 1982; Fukuda et al., 2000; Lagace 
et al., 1985; Thompson et al., 1994; Wetzels et al., 
1991).
  Based on the selected perturbed pathways, we com-
bined selected metabolic pathways with protein-protein 
interaction information by constructing a subnetwork of 
protein-protein interactions (e.g., Fig. 4). To contruct a 
subnetwork of protein-protein interactions for each path-
way, information on protein-protein interactions was ex-
tracted from the Human Protein Reference Database 
(HPRD) (Peri et al., 2004). Fig. 4 shows that protein 
complexes can be identified based on the definitions in 
individual metabolic pathways, in which the protein-pro-
tein interactions can be categorized into intra- or in-
ter-pathway interactions. It also is possible to identify 
significantly perturbed proteins within the protein com-
plexes for a more detailed analysis of the pathways.
  Based on perturbation score, we present 36 sig-
nificantly perturbed pathways, instead of collecting a 
large amount of significantly dysregulated individual 
genes. The selected pathways are then considered to 
be dysregulated functional modules that putatively con-
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tribute to the progression of disease. The result of this 
study suggests that the strategy of microarray analysis, 
using the score of perturbation, selects several interest-
ing perturbed pathways that are implicated in the pro-
gression of breast cancer. It also was found that these 
selected pathways include several known breast can-
cer-related genes. Therefore, based on the selected 
pathways, this study sets the stage for further inves-
tigation of the basic mechanisms that serve as a basis 
for discriminating different breast cancer types to find 
new therapeutic drug targets.
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Supplementary Table S1. Continued

KEGG Pathway Description

# of 

genes in 

pathway

# of 

genes 

linked to 

GPL570 

Probes

p＜0.05

# of Over 

Expressed Genes

p＜0.01

# of Over 

Expressed Genes
P1 P2 P3

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Systemic lupus erythematosus 134 122 6 55 1 34 0.8 27.9 14.3 

Keratan sulfate biosynthesis 16 16 1 4 1 3 6.3 18.8 12.5 

ECM-receptor interaction 88 87 18 25 8 11 9.2 12.6 10.9 

Chondroitin sulfate biosynthesis 22 22 1 5 1 2 4.5 9.1 6.8 

Cell junctions 138 134 15 26 8 10 6.0 7.5 6.7 

Maturity onset diabetes of the young 25 23 2 7 1 2 4.3 8.7 6.5 

alpha-Linolenic acid metabolism 17 17 2 3 1 1 5.9 5.9 5.9 

Linoleic acid metabolism 29 29 1 4 1 2 3.4 6.9 5.2 

Focal adhesion 200 198 28 29 10 10 5.1 5.1 5.1 

Glycosphingolipid biosynthesis - lactoseries 10 10 0 3 0 1 0.0 10.0 5.0 

Glycosphingolipid biosynthesis - neo-lactoseries 21 21 2 4 0 2 0.0 9.5 4.8 

Reductive carboxylate cycle (CO2 fixation) 11 11 1 1 0 1 0.0 9.1 4.5 

Ether lipid metabolism 33 33 4 4 2 1 6.1 3.0 4.5 

Nitrogen metabolism 24 24 2 1 1 1 4.2 4.2 4.2 

Valine, leucine and isoleucine biosynthesis 12 12 3 2 0 1 0.0 8.3 4.2 

Glycan structures - biosynthesis 2 63 63 4 11 1 4 1.6 6.3 4.0 

Prion disease 14 13 1 2 0 1 0.0 7.7 3.8 

Protein export 15 14 1 2 1 0 7.1 0.0 3.6 

Graft-versus-host disease 42 42 3 8 0 3 0.0 7.1 3.6 

Glycosphingolipid biosynthesis - globoseries 14 14 0 2 0 1 0.0 7.1 3.6 

Sulfur metabolism 14 14 4 2 0 1 0.0 7.1 3.6 

Bladder cancer 42 42 8 9 2 1 4.8 2.4 3.6 

GnRH signaling pathway 100 100 10 12 5 2 5.0 2.0 3.5 

ABC transporters - General 44 43 3 4 2 1 4.7 2.3 3.5 

Glycerophospholipid metabolism 72 72 8 5 2 3 2.8 4.2 3.5 

VEGF signaling pathway 73 73 6 9 3 2 4.1 2.7 3.4 

Cell adhesion molecules (CAMs) 133 132 7 24 1 8 0.8 6.1 3.4 

Type I diabetes mellitus 44 44 4 8 0 3 0.0 6.8 3.4 

Toll-like receptor signaling pathway 107 104 11 17 3 4 2.9 3.8 3.4 

Pyrimidine metabolism 91 90 6 18 1 5 1.1 5.6 3.3 

Riboflavin metabolism 16 16 1 1 1 0 6.3 0.0 3.1 

One carbon pool by folate 16 16 2 4 0 1 0.0 6.3 3.1 

Cell cycle 119 115 14 22 0 7 0.0 6.1 3.0 

Propanoate metabolism 34 33 2 3 1 1 3.0 3.0 3.0 

Renin-angiotensin system 17 17 2 2 1 0 5.9 0.0 2.9 

Cysteine metabolism 17 17 2 1 0 1 0.0 5.9 2.9 

Glycan structures - biosynthesis 1 123 121 8 21 2 5 1.7 4.1 2.9 

Basal transcription factors 37 35 1 5 0 2 0.0 5.7 2.9 

Autoimmune thyroid disease 53 53 5 10 0 3 0.0 5.7 2.8 

Arachidonic acid metabolism 56 55 1 4 1 2 1.8 3.6 2.7 

Nicotinate and nicotinamide metabolism 37 37 1 4 0 2 0.0 5.4 2.7 

T cell receptor signaling pathway 93 93 6 17 1 4 1.1 4.3 2.7 

Ribosome 91 75 0 15 0 4 0.0 5.3 2.7 

Fructose and mannose metabolism 38 38 2 3 1 1 2.6 2.6 2.6 

Allograft rejection 38 38 4 6 0 2 0.0 5.3 2.6 

Fc epsilon RI signaling pathway 77 77 7 7 3 1 3.9 1.3 2.6 

Supplementary Table S1. The list of all pathways from KEGG database, which are sorted according to the scores of 

perturbation. Note that N1 represents the total number of genes in each pathway, N2 is the number of overexpressed 

genes (p＜0.01) in each pathway, N3 is the number of underexpressed genes (p＜0.01) in each pathway, N4 is the total 

number of significantly perturbed genes in each pathway (i.e., N4=N2+N3 ), and N5 is the score of perturbation i.e., p-val-

ues by the cumulative hypergeometric distribution
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Supplementary Table S1. Continued

KEGG Pathway Description

# of 

genes in 

pathway

# of 

genes 

linked to 

GPL570 

Probes

p＜0.05

# of Over 

Expressed Genes

p＜0.01

# of Over 

Expressed Genes
P1 P2 P3

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Long-term depression 78 78 4 10 2 2 2.6 2.6 2.6 

Parkinson's disease 20 20 0 5 0 1 0.0 5.0 2.5 

Glycosphingolipid biosynthesis - ganglioseries 21 20 1 4 0 1 0.0 5.0 2.5 

Glycolysis / Gluconeogenesis 62 61 3 9 0 3 0.0 4.9 2.5 

Methionine metabolism 21 21 1 3 0 1 0.0 4.8 2.4 

Amyotrophic lateral sclerosis (ALS) 21 21 0 2 0 1 0.0 4.8 2.4 

Glioma 65 65 8 9 2 1 3.1 1.5 2.3 

Metabolism of xenobiotics by cytochrome P450 70 65 1 5 0 3 0.0 4.6 2.3 

TGF-beta signaling pathway 90 87 9 10 1 3 1.1 3.4 2.3 

Valine, leucine and isoleucine degradation 44 44 1 3 1 1 2.3 2.3 2.3 

N-Glycan biosynthesis 45 44 2 2 1 1 2.3 2.3 2.3 

Prostate cancer 91 91 13 13 2 2 2.2 2.2 2.2 

Glycosylphosphatidylinositol(GPI)-anchor biosyn-

thesis

23 23 1 1 1 0 4.3 0.0 2.2 

Epithelial cell signaling in Helicobacter pylori in-

fection

69 69 7 9 2 1 2.9 1.4 2.2 

Mismatch repair 23 23 1 2 0 1 0.0 4.3 2.2 

Melanoma 71 71 8 13 2 1 2.8 1.4 2.1 

Pantothenate and CoA biosynthesis 24 24 0 3 0 1 0.0 4.2 2.1 

B cell receptor signaling pathway 73 73 4 16 1 2 1.4 2.7 2.1 

mTOR signaling pathway 51 50 6 6 1 1 2.0 2.0 2.0 

Inositol phosphate metabolism 51 51 7 5 0 2 0.0 3.9 2.0 

Galactose metabolism 26 26 2 3 0 1 0.0 3.8 1.9 

Phenylalanine metabolism 26 26 0 2 0 1 0.0 3.8 1.9 

Non-small cell lung cancer 54 54 7 8 1 1 1.9 1.9 1.9 

Hedgehog signaling pathway 57 55 2 9 0 2 0.0 3.6 1.8 

Urea cycle and metabolism of amino groups 28 28 1 1 1 0 3.6 0.0 1.8 

Hematopoietic cell lineage 87 86 6 16 0 3 0.0 3.5 1.7 

Leukocyte transendothelial migration 116 115 9 13 2 2 1.7 1.7 1.7 

Thyroid cancer 29 29 3 6 1 0 3.4 0.0 1.7 

Small cell lung cancer 87 87 10 16 0 3 0.0 3.4 1.7 

Aminosugars metabolism 29 29 2 2 0 1 0.0 3.4 1.7 

Purine metabolism 147 146 10 20 1 4 0.7 2.7 1.7 

Wnt signaling pathway 149 146 7 14 1 4 0.7 2.7 1.7 

Antigen processing and presentation 88 88 7 11 0 3 0.0 3.4 1.7 

Vibrio cholerae infection 59 59 4 10 1 1 1.7 1.7 1.7 

Olfactory transduction 383 118 3 13 0 4 0.0 3.4 1.7 

MAPK signaling pathway 269 268 15 37 4 5 1.5 1.9 1.7 

Retinol metabolism 65 60 4 4 1 1 1.7 1.7 1.7 

Glutamate metabolism 31 31 4 2 1 0 3.2 0.0 1.6 

Gap junction 96 94 5 13 2 1 2.1 1.1 1.6 

Huntington's disease 32 32 1 1 1 0 3.1 0.0 1.6 

Axon guidance 128 128 10 18 1 3 0.8 2.3 1.6 

Bile acid biosynthesis 33 33 1 2 0 1 0.0 3.0 1.5 

Drug metabolism - cytochrome P450 72 67 1 6 0 2 0.0 3.0 1.5 

p53 signaling pathway 69 68 9 16 0 2 0.0 2.9 1.5 

Renal cell carcinoma 69 69 6 8 1 1 1.4 1.4 1.4 

Natural killer cell mediated cytotoxicity 141 138 10 18 1 3 0.7 2.2 1.4 

Complement and coagulation cascades 69 69 3 6 0 2 0.0 2.9 1.4 

Long-term potentiation 70 70 1 10 1 1 1.4 1.4 1.4 
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Supplementary Table S1. Continued

KEGG Pathway Description

# of 

genes in 

pathway

# of 

genes 

linked to 

GPL570 

Probes

p＜0.05

# of Over 

Expressed Genes

p＜0.01

# of Over 

Expressed Genes
P1 P2 P3

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Base excision repair 35 35 1 7 0 1 0.0 2.9 1.4 

Primary immunodeficiency 35 35 2 6 0 1 0.0 2.9 1.4 

Arginine and proline metabolism 35 35 3 2 0 1 0.0 2.9 1.4 

Regulation of actin cytoskeleton 219 216 19 28 3 3 1.4 1.4 1.4 

DNA replication 36 36 2 5 0 1 0.0 2.8 1.4 

Pancreatic cancer 73 73 8 12 2 0 2.7 0.0 1.4 

Folate biosynthesis 39 38 3 4 1 0 2.6 0.0 1.3 

Neurodegenerative Diseases 39 39 0 3 0 1 0.0 2.6 1.3 

Phosphatidylinositol signaling system 80 80 7 7 0 2 0.0 2.5 1.3 

Pyruvate metabolism 42 42 1 4 0 1 0.0 2.4 1.2 

Colorectal cancer 85 85 9 7 2 0 2.4 0.0 1.2 

Type II diabetes mellitus 44 43 2 8 0 1 0.0 2.3 1.2 

Nucleotide excision repair 43 43 1 5 0 1 0.0 2.3 1.2 

ErbB signaling pathway 87 87 5 7 2 0 2.3 0.0 1.1 

Apoptosis 89 88 6 12 0 2 0.0 2.3 1.1 

Notch signaling pathway 46 46 3 3 1 0 2.2 0.0 1.1 

Taste transduction 53 46 2 8 0 1 0.0 2.2 1.1 

Histidine metabolism 50 50 0 4 0 1 0.0 2.0 1.0 

Endometrial cancer 52 52 6 5 1 0 1.9 0.0 1.0 

Basal cell carcinoma 55 54 1 5 0 1 0.0 1.9 0.9 

Acute myeloid leukemia 58 58 6 8 1 0 1.7 0.0 0.9 

Tyrosine metabolism 58 58 3 3 0 1 0.0 1.7 0.9 

Neuroactive ligand-receptor interaction 303 302 9 39 1 4 0.3 1.3 0.8 

Oxidative phosphorylation 129 125 8 23 1 1 0.8 0.8 0.8 

Tight junction 135 134 5 14 1 1 0.7 0.7 0.7 

PPAR signaling pathway 69 68 7 4 0 1 0.0 1.5 0.7 

Cytokine-cytokine receptor interaction 279 273 17 35 1 3 0.4 1.1 0.7 

Insulin signaling pathway 139 138 6 12 2 0 1.4 0.0 0.7 

Adherens junction 75 75 2 6 0 1 0.0 1.3 0.7 

Chronic myeloid leukemia 76 76 7 12 1 0 1.3 0.0 0.7 

Jak-STAT signaling pathway 155 155 15 22 1 1 0.6 0.6 0.6 

Calcium signaling pathway 176 176 9 23 1 1 0.6 0.6 0.6 

Melanogenesis 102 101 5 9 1 0 1.0 0.0 0.5 

Ubiquitin mediated proteolysis 136 133 8 24 0 1 0.0 0.8 0.4 

Adipocytokine signaling pathway 72 72 5 10 0 0 0.0 0.0 0.0 

Starch and sucrose metabolism 79 75 3 7 0 0 0.0 0.0 0.0 

Pathogenic Escherichia coli infection - EHEC 51 49 0 6 0 0 0.0 0.0 0.0 

Pathogenic Escherichia coli infection - EPEC 51 49 0 6 0 0 0.0 0.0 0.0 

Biosynthesis of steroids 24 24 0 5 0 0 0.0 0.0 0.0 

O-Glycan biosynthesis 31 31 3 5 0 0 0.0 0.0 0.0 

Heparan sulfate biosynthesis 20 19 2 5 0 0 0.0 0.0 0.0 

Sphingolipid metabolism 39 38 3 5 0 0 0.0 0.0 0.0 

Terpenoid biosynthesis 6 6 0 5 0 0 0.0 0.0 0.0 

Glycine, serine and threonine metabolism 42 42 1 4 0 0 0.0 0.0 0.0 

Tryptophan metabolism 58 58 0 4 0 0 0.0 0.0 0.0 

Fatty acid metabolism 46 46 3 3 0 0 0.0 0.0 0.0 

Alanine and aspartate metabolism 33 33 1 3 0 0 0.0 0.0 0.0 

Lysine degradation 52 52 1 3 0 0 0.0 0.0 0.0 

Glutathione metabolism 50 47 1 3 0 0 0.0 0.0 0.0 

Glycosaminoglycan degradation 17 17 0 3 0 0 0.0 0.0 0.0 
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Supplementary Table S1. Continued

KEGG Pathway Description

# of 

genes in 

pathway

# of 

genes 

linked to 

GPL570 

Probes

p＜0.05

# of Over 

Expressed Genes

p＜0.01

# of Over 

Expressed Genes
P1 P2 P3

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Lobular 

Carci-

noma

Ductal 

Carci-

noma

Benzoate degradation via CoA ligation 23 23 0 3 0 0 0.0 0.0 0.0 

Butanoate metabolism 36 36 0 3 0 0 0.0 0.0 0.0 

Carbon fixation 24 24 0 3 0 0 0.0 0.0 0.0 

Atrazine degradation 9 9 0 3 0 0 0.0 0.0 0.0 

Porphyrin and chlorophyll metabolism 41 37 0 3 0 0 0.0 0.0 0.0 

Aminoacyl-tRNA biosynthesis 39 39 4 3 0 0 0.0 0.0 0.0 

Glycan structures - degradation 30 30 0 3 0 0 0.0 0.0 0.0 

Biosynthesis of unsaturated fatty acids 23 23 2 3 0 0 0.0 0.0 0.0 

Homologous recombination 28 28 0 3 0 0 0.0 0.0 0.0 

Regulation of autophagy 34 33 2 3 0 0 0.0 0.0 0.0 

Pentose phosphate pathway 26 26 0 2 0 0 0.0 0.0 0.0 

Androgen and estrogen metabolism 55 52 1 2 0 0 0.0 0.0 0.0 

gamma-Hexachlorocyclohexane degradation 18 18 0 2 0 0 0.0 0.0 0.0 

Glycerolipid metabolism 51 50 4 2 0 0 0.0 0.0 0.0 

Alkaloid biosynthesis II 20 20 0 2 0 0 0.0 0.0 0.0 

Drug metabolism - other enzymes 52 49 0 2 0 0 0.0 0.0 0.0 

RNA polymerase 25 25 2 2 0 0 0.0 0.0 0.0 

Proteasome 35 35 1 2 0 0 0.0 0.0 0.0 

Non-homologous end-joining 14 13 0 2 0 0 0.0 0.0 0.0 

Alzheimer's disease 28 28 1 2 0 0 0.0 0.0 0.0 

Dentatorubropallidoluysian atrophy (DRPLA) 15 15 1 2 0 0 0.0 0.0 0.0 

Citrate cycle (TCA cycle) 28 27 1 1 0 0 0.0 0.0 0.0 

Synthesis and degradation of ketone bodies 9 9 0 1 0 0 0.0 0.0 0.0 

C21-Steroid hormone metabolism 11 11 0 1 0 0 0.0 0.0 0.0 

Lysine biosynthesis 5 5 0 1 0 0 0.0 0.0 0.0 

beta-Alanine metabolism 24 24 0 1 0 0 0.0 0.0 0.0 

Selenoamino acid metabolism 32 32 1 1 0 0 0.0 0.0 0.0 

1- and 2-Methylnaphthalene degradation 19 19 1 1 0 0 0.0 0.0 0.0 

Glyoxylate and dicarboxylate metabolism 15 15 2 1 0 0 0.0 0.0 0.0 

3-Chloroacrylic acid degradation 14 14 1 1 0 0 0.0 0.0 0.0 

Limonene and pinene degradation 24 24 0 1 0 0 0.0 0.0 0.0 

Caprolactam degradation 7 7 0 1 0 0 0.0 0.0 0.0 

SNARE interactions in vesicular transport 38 38 1 1 0 0 0.0 0.0 0.0 

Asthma 30 30 1 1 0 0 0.0 0.0 0.0 

Inositol metabolism 2 2 0 0 0 0 0.0 0.0 0.0 

Pentose and glucuronate interconversions 25 22 0 0 0 0 0.0 0.0 0.0 

Ascorbate and aldarate metabolism 9 9 0 0 0 0 0.0 0.0 0.0 

Fatty acid biosynthesis 6 6 0 0 0 0 0.0 0.0 0.0 

Fatty acid elongation in mitochondria 10 10 0 0 0 0 0.0 0.0 0.0 

Ubiquinone biosynthesis 15 13 1 0 0 0 0.0 0.0 0.0 

Caffeine metabolism 7 7 0 0 0 0 0.0 0.0 0.0 

Geraniol degradation 11 11 0 0 0 0 0.0 0.0 0.0 

Bisphenol A degradation 5 5 0 0 0 0 0.0 0.0 0.0 

Fluorobenzoate degradation 1 1 0 0 0 0 0.0 0.0 0.0 

Phenylalanine, tyrosine and tryptophan biosyn-

thesis

9 9 0 0 0 0 0.0 0.0 0.0 

Novobiocin biosynthesis 3 3 0 0 0 0 0.0 0.0 0.0 

Taurine and hypotaurine metabolism 10 10 0 0 0 0 0.0 0.0 0.0 

Aminophosphonate metabolism 17 17 0 0 0 0 0.0 0.0 0.0 

Cyanoamino acid metabolism 9 9 0 0 0 0 0.0 0.0 0.0 
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Supplementary Table S1. Continued

KEGG Pathway Description
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genes in 

pathway

# of 

genes 
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D-Glutamine and D-glutamate metabolism 4 4 1 0 0 0 0.0 0.0 0.0 

D-Arginine and D-ornithine metabolism 1 1 0 0 0 0 0.0 0.0 0.0 

N-Glycan degradation 16 16 0 0 0 0 0.0 0.0 0.0 

Nucleotide sugars metabolism 6 6 3 0 0 0 0.0 0.0 0.0 

Streptomycin biosynthesis 10 10 1 0 0 0 0.0 0.0 0.0 

Peptidoglycan biosynthesis 5 5 0 0 0 0 0.0 0.0 0.0 

Tetrachloroethene degradation 3 3 0 0 0 0 0.0 0.0 0.0 

1,4-Dichlorobenzene degradation 1 1 0 0 0 0 0.0 0.0 0.0 

Styrene degradation 3 3 1 0 0 0 0.0 0.0 0.0 

C5-Branched dibasic acid metabolism 2 2 0 0 0 0 0.0 0.0 0.0 

Methane metabolism 7 7 0 0 0 0 0.0 0.0 0.0 

Thiamine metabolism 8 8 0 0 0 0 0.0 0.0 0.0 

Vitamin B6 metabolism 5 5 0 0 0 0 0.0 0.0 0.0 

Biotin metabolism 4 4 0 0 0 0 0.0 0.0 0.0 

Lipoic acid metabolism 2 2 0 0 0 0 0.0 0.0 0.0 

Monoterpenoid biosynthesis 2 2 0 0 0 0 0.0 0.0 0.0 

Phenylpropanoid biosynthesis 4 4 0 0 0 0 0.0 0.0 0.0 

Alkaloid biosynthesis I 5 5 0 0 0 0 0.0 0.0 0.0 

Circadian rhythm 13 13 0 0 0 0 0.0 0.0 0.0 

Mean: 0.9 2.1 1.5 


