• Title/Summary/Keyword: biological model

Search Result 2,643, Processing Time 0.028 seconds

The Melanin Inhibition, Anti-aging and Anti-inflammation Effects of Portulaca oleracea Extracts on Cells (쇠비름 추출물의 미백 및 항노화, 항염증 효과)

  • Zhang, Rui;Lee, Hyun-Jin;Yoon, Yeong-Min;Kim, Su-Mi;Kim, Hyun-Sook;Li, Shun Hua;An, Sung-Kwan
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • The Portulaca oleracea (P. oleracea) is a popular herbal medicine in East Asia that was known to possess detoxification, antifebrile and antifungal effects. In the present study, we examined the biological activities of ethanol extracts of P. oleracea under various conditions with NIH3T3, B16F10, and MCF-7 cell line model systems. Extracts of P. oleracea (0.5 mg/ml) showed inhibition of expression of tyrosinase, but does not suppress either of TYRP-1 or DCT expression on B16F10 cells. Extracts of P. oleracea (2 mg/ml) showed anti-inflammatory effects on TNF-$\alpha$-stimulated NIH3T3/$NF{\kappa}B$-Luc cells and increase of the synthesis of collagen on NIH3T3 (wild type) cells. These results suggest that extracts of P. oleracea could be used as a functional biomaterial in developing a skin whitening agent and having the anti-inflammatory, anti-wrinkle, and anti-aging activities.

Predicting the Occurrence of Generation for Riptortus pedestris (Fabricius) Using Their Body Color (톱다리개미허리노린재의 체색변이를 이용한 발생세대 예측)

  • Lee, Hyoseok;Jung, Jong-Kook;Im, Jae Seong;Park, Marana;Lee, Seunghyun;Lee, Joon-Ho
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.431-435
    • /
    • 2015
  • Riptortus pedestris (Fabricius) is one of the important insect pests of leguminous crops, which occurs in most areas of South Korea. It is hard to distinguish each generation in crop fields since not only the longevity of adult R. pedestris is long but also the developmental period is short. Especially, the 2nd generation adults cause enormous damage to soybean while the occurrence time is synchronized with the podding stage of soybean. Controlling the 1st generation of R. pedestris helps to decrease the damage by decreasing the 2nd generation density. This study was conducted to distinguish between the 1st generation and the overwintering generation by using differences in body coloration which is dependent on the day-length during the nymph stage. In addition, the difference was verified by the population dynamics model of R. pedestris. The occurrence time of 1st generation adults could be considered when the summer form is 20% or more. These results will be used for beneficial management decisions to reduce the 2nd generation population.

Bionomics of the Green Peach Aphid(Myzus persicae $S\H{u}lzer$) Adults on Chinese cabbage(Brassica campestris) (복숭아혹진딧물(Myzus persicae $S\H{u}lzer$) 성충의 수명과 생명표)

  • Kim, Ji-Soo;Kim, Tae-Heung;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.44 no.3 s.140
    • /
    • pp.213-217
    • /
    • 2005
  • Adult development and fecundity of the green peach aphid, Myzus persicae $S\H{u}lzer$, were studied at $15{\sim}32.5^{\circ}C$ with $60{\sim}70%$ RH under 16L:8D and the results were put together to build a life table. The longevity shortened as temperatures rose at and below $25^{\circ}C$ whereas it remained relatively constant at $27.5^{\circ}C$. Total fecundity was not significantly different at all temperatures except at $30^{\circ}C$. Daily fecundity gradually increased from $15\;to\;22.5^{\circ}C$. It was 5.1 at $25^{\circ}C$ and as temperatures either went down or up, it decreased to 2.8 at both $15^{\circ}C\;and\;30^{\circ}C$. Fecundity model built from total fecundity at various temperatures suggests that $18.3^{\circ}C$ was the optimum temperature for the maximum progeny of 51. Net reproduction rate RO was highest of 36.5 at $27.5^{\circ}C$. The intrinsic rate of increase per day $r_m$ and the finite rate of increase per day $\lambda$ were highest of 0.4 and 1.6, respectively and the doubling time Dt was shortest of 1.6. Constructed life table suggests that the optimum temperature for adult development for the green peach aphid was $27.5^{\circ}C$ at which the mean generation time was 8.1.

Animal Models for the IGF-1 Signal System in Longevity (장수와 관련된 IGF-1 신호 시스템을 연구하기 위한 동물 모델)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1428-1433
    • /
    • 2012
  • Longevity is an exciting but difficult subject to study because it is determined by complex processes that require the coordinated action of several genetic factors as well as physiological and environmental influences. Genetic approaches have been applied to animal models to identify the molecular mechanism responsible for longevity. Several experimental model organisms obtained over the last decades suggest that the complete deletion of a single gene by gene targeting has proven to be an invaluable tool for the discovery of the mechanisms underlying longevity. The first discovery of long-lived mutants came from Caenorhabditis elegans research, which identified the insulin/IGF-1 pathway as responsible for longevity in this worm. IGF-1 is a multifunctional polypeptide that has sequence similarity to insulin and is involved in normal growth and development of cells. Several factors in the IGF-1 system have since been studied by gene targeting in the control of longevity in lower species, including nematode and fruit fly. In addition, significant progress has been made using mice models to extend the lifespan by targeted mutations that interfere with growth hormone/IGF-1 and IGF-1 signaling cascades. A recent finding that IGF-1 is involved in aging in mice was achieved by using liver-specific knockout mutant mice, and this clearly demonstrated that the IGF-1 signal pathway can extend the lifespan in both invertebrates and vertebrate models. Although the underlying molecular mechanisms for the control of longevity are not fully understood, it is widely accepted that reduced IGF-1 signaling plays an important role in the control of aging and longevity. Several genes involved in the IGF-1 signaling system are reviewed in relation to longevity in genetically modified mice models.

Abrogation of the Circadian Nuclear Receptor REV-ERBα Exacerbates 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration

  • Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Chung, Sooyoung;Choe, Youngshik;Choe, Han Kyoung;Son, Gi Hoon;Rhee, Kunsoo;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.742-752
    • /
    • 2018
  • Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic (DAergic) neurons, particularly in the substantia nigra (SN). Although circadian dysfunction has been suggested as one of the pathophysiological risk factors for PD, the exact molecular link between the circadian clock and PD remains largely unclear. We have recently demonstrated that $REV-ERB{\alpha}$, a circadian nuclear receptor, serves as a key molecular link between the circadian and DAergic systems. It competitively cooperates with NURR1, another nuclear receptor required for the optimal development and function of DA neurons, to control DAergic gene transcription. Considering our previous findings, we hypothesize that $REV-ERB{\alpha}$ may have a role in the onset and/or progression of PD. In the present study, we therefore aimed to elucidate whether genetic abrogation of $REV-ERB{\alpha}$ affects PD-related phenotypes in a mouse model of PD produced by a unilateral injection of 6-hydroxydopamine (6-OHDA) into the dorsal striatum. $REV-ERB{\alpha}$ deficiency significantly exacerbated 6-OHDA-induced motor deficits as well as DAergic neuronal loss in the vertebral midbrain including the SN and the ventral tegmental area. The exacerbated DAergic degeneration likely involves neuroinflammation-mediated neurotoxicity. The $REV-erb{\alpha}$ knockout mice showed prolonged microglial activation in the SN along with the over-production of interleukin $1{\beta}$, a pro-inflammatory cytokine, in response to 6-OHDA. In conclusion, the present study demonstrates for the first time that genetic abrogation of $REV-ERB{\alpha}$ can increase vulnerability of DAergic neurons to neurotoxic insults, such as 6-OHDA, thereby implying that its normal function may be beneficial for maintaining DAergic neuron populations during PD progression.

Effects of Phytoestrogen on Cell Growth and Insulin-like Growth Factor-I (IGF-I) Production in MC3T3-El Cells (식물성 에스트로겐이 MC3T3-El 골아세포의 성장과 Insulin-like Growth Factor-1(IGF-1)생성에 미치는 영향)

  • Kwon, Ji-Young;Nam, Taek-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.743-749
    • /
    • 2005
  • Estrogen is known to play an important role in maintaining bone mass, since the concentration of serum estrogen decrease after menopause and the estrogen deficiency results in bone loss. Phytoestrogens are plant compounds with estrogen-like biological activity, In this study, to investigate the bioactivities of phytoestrogen, which act on bone metabolism, we examined the effect of selected food-borne phytoestrogens (genistein, daidzein and resveratrol) on osteoblast proliferation and IGF-I production using MC3T3-El cells, a mouse calvaria osteoblast-like cell line. Cells were cultured in a serum free medium for 48 hr in the presence of genistein $(10^{-5}\;M)$, daidzein $(10^{-5}\;M)$ and resveratrol $(10^{-5}\;M)$. The effects of genistein, daidzein and resveratrol on the cell proliferation and growth were evaluated by total cell numbers, MTS assay and cell migration assay. Their effect was compared with the $17\beta-estradiol$. Genistein, daidzein and resveratrol exhibited stimulatory effects on the growth of MC3T3-El cells, and the most pronounced effect was shown with daidzein. In addition, these phytoestrogen increased alkaline phosphatase activity of MC3T3-El cells. These effects were similar to that of $17\beta-estradiol$ effects. Moreover, treatment with genistein, daidzein and resveratrol increased production of insulin like growth factor-I (IGF-I) in conditioned media, indicating that the growth promoting effects of these phytoestrogen were related to the changes in production of IGF-I by MC3T3-El cells. These results show that genistein, daidzein and resveratrol have a stimulatory effect on osteoblast function, and that these findings in a cell model may prove relevant to protecting against the loss of bone mass and the development of osteoporosis in human subjects.

The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments (Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.295-301
    • /
    • 2000
  • It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

  • PDF

Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid (복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choi J.H.;Kim C.J.;Lee C.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.261-271
    • /
    • 2000
  • The present study investigated flow dynamics of a two-dimensional abdominal aortic bifurcation model under sinusoidal flow conditions considering wall motion. impedance phase angle(time delay between pressure and flow waveforms), and non-Newtonian fluid using computational fluid dynamics. The wall shear stress showed large variations in the bifurcated region and the wall motion reduced amplitude of wall shear stress significantly. As the impedance phase angle was changed to more negative values, the mean wall shear stress (time-averaged) decreased while the amplitude (oscillatory) of wall shear stress increased. At the curvature site on the outer wall where the mean wall shear stress approached zero. influence of the phase angle was relatively large. The mean wall shear stress decreased by $50\%$ in the $-90^{\circ}$ phase angle (flow wave advanced pressure wave by a quarter period) compared to the $0^{\circ}$ phase angle while the amplitude of wall shear stress increased by $15\%$. Therefore, hypertensive patients who tend to have large negative phase angles become more vulnerable to atherosclerosis according to the low and oscillatory shear stress theory because of the reduced mean and the increased oscillatory wall shear stresses. Non-Newtonian characteristics of fluid substantially increased the mean wall shear stress resulting in a less vulnerable state to atherosclerosis.

  • PDF

Design of an Optimal Adaptive Filter for the Cancellation of M-wave in the EMG Controlled Functional Electrical Stimulation for Paralyzed Individuals (마비환자의 근전도제에기능적전기자극을 위한 M-wave 제거용 최적적응필터 설계)

  • Yeom Hojoon;Park Youngcheol;Lee Younghee;Yoon Youngro;Shin Taemin;Yoon Hyoungro
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.479-487
    • /
    • 2004
  • Biopotential signals have been used as command in systems using electrical stimulation of motor nerves to restore movement after an injury to the central nervous system (CNS). In order to use the voluntary EMG (electromyography) among the biopotentials as a control signal for the electrical stimulation of the same muscle for CNS injury patients, it is necessary to remove M-wave of having high magnitude from raw data. We designed an optimal filter for removing the M-wave and preserving the voluntary EMG and showed that the optimal filter is eigen filter. We also proved that the previous method using the prediction error filter(PEF) is a suboptimal filtering in the sense of preserving the voluntary EMG. On basis of the data obtained from a model for M-wave and voluntary EMG and from actual CNS injury patients, with false-positive rate analysis, the proposed adaptive filter showed a very promising performance in comparison with previous method.

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF