• Title/Summary/Keyword: biological immune system

Search Result 248, Processing Time 0.021 seconds

Stress Relaxation and Sleep Induction Effect of Fermented Sea Tangle Saccharina japonica and Oyster Crassostrea gigas Powder (굴(Crassostrea gigas)·다시마(Saccharina japonica) 발효 분말의 스트레스 완화 및 수면 유도 효과)

  • Woo, Nam-Sik;Seo, Yong Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.702-707
    • /
    • 2013
  • Sleep is an essential biological process of which the underlying regulatory mechanisms involve numerous anatomical structures and biochemical substances that can be compromised by stress and the immune system. Gamma aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the central nervous system (CNS). It is well established that activation of $GABA_A$ receptors promotes sleep. L. brevis BJ20 fermentation of sea tangle and oysters resulted in stress reduction and sleep inducing effects. This is the first study to report that GABA has the ability to induce sleep related hormones in mice; therefore, it has potential use as a natural sleep aid. These results suggested that sea tangle and oysters fermented by L. brevis BJ20 can be used as potential agents for stress reduction and sleep promotion.

Antimicrobial Peptides as Natural Antibiotic Materials (새로운 천연 항생물질로서의 항균 펩타이드)

  • Cha, Yeon-Kyung;Kim, Young-Soo;Choi, Yoo-Seong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Antimicrobial peptides are widely used in various organisms as a defense system against infection. The peptides are lethal towards bacteria and fungi, however have minimal toxicity in mammalian and plant cells. In this aspect, it is considered that antimicrobial peptides are new alternative materials for defensing against microbial infection. Here, we describe overall characteristics of antimicrobial peptides based on the mechanism of action, classification of the peptides, report detection/screening methods and chemical/biological production. It is expected that understanding of innate immune system based on antimicrobial peptides tends to develop novel natural antimicrobial agents, which might be applied for defensing pathogenic microorganisms resistant to conventional antibiotics.

Advances in Accurate Microbial Genome-Editing CRISPR Technologies

  • Lee, Ho Joung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.903-911
    • /
    • 2021
  • Previous studies have modified microbial genomes by introducing gene cassettes containing selectable markers and homologous DNA fragments. However, this requires several steps including homologous recombination and excision of unnecessary DNA regions, such as selectable markers from the modified genome. Further, genomic manipulation often leaves scars and traces that interfere with downstream iterative genome engineering. A decade ago, the CRISPR/Cas system (also known as the bacterial adaptive immune system) revolutionized genome editing technology. Among the various CRISPR nucleases of numerous bacteria and archaea, the Cas9 and Cas12a (Cpf1) systems have been largely adopted for genome editing in all living organisms due to their simplicity, as they consist of a single polypeptide nuclease with a target-recognizing RNA. However, accurate and fine-tuned genome editing remains challenging due to mismatch tolerance and protospacer adjacent motif (PAM)-dependent target recognition. Therefore, this review describes how to overcome the aforementioned hurdles, which especially affect genome editing in higher organisms. Additionally, the biological significance of CRISPR-mediated microbial genome editing is discussed, and future research and development directions are also proposed.

Host-Microbe Interactions Regulate Intestinal Stem Cells and Tissue Turnover in Drosophila

  • Ji-Hoon Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2024
  • With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.

The Within-Host Population Dynamics of Normal Flora in the Presence of an Invading Pathogen and Antibiotic Treatments

  • Kim, Jung-Mo;Lee, Dong-Hwan;Song, Yoon-Seok;Kang, Seong-Woo;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.146-153
    • /
    • 2007
  • A mathematical competition model between normal flora and an invading pathogen was devised to allow analysis of bacterial infections in a host. The normal flora includes the various microorganisms that live on or within the host and act as a primary human immune system. Despite the important role of the normal flora, no mathematical study has been undertaken on models of the interaction between it and invading pathogens against a background of antibiotic treatment. To quantify key elements of bacterial behavior in a host, pairs of nonlinear differential equations were used to describe three categories of human health conditions, namely, healthy, latent infection, and active infection. In addition, a cutoff value was proposed to represent the minimum population level required for survival. The recovery of normal flora after antibiotic treatment was also included in the simulation because of its relation to human health recovery. The significance of each simulation parameter for the bacterial growth model was investigated. The devised simulation showed that bacterial proliferation rate, carrying capacity, initial population levels, and competition intensity have a significant effect on bacterial behavior. Consequently, a model was established to describe competition between normal flora and an infiltrating pathogen. Unlike other population models, the recovery process described by the devised model can describe the human health recovery mechanism.

Leukemia inhibitory factor and its receptor: expression and regulation in the porcine endometrium throughout the estrous cycle and pregnancy

  • Yoo, Inkyu;Chae, Soogil;Han, Jisoo;Lee, Soohyung;Kim, Hyun Jong;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.192-200
    • /
    • 2019
  • Objective: Leukemia inhibitory factor (LIF) binds to a heterodimeric receptor composed of LIF receptor (LIFR) and glycoprotein 130 (GP130) to transmit signals into the cell. LIF plays an important role in reproduction by regulating immune response, decidualization, and implantation in several species. However, the expression of LIF and LIFR in the endometrium throughout the estrous cycle and pregnancy in pigs is not fully understood. Methods: We analyzed the expression of LIF and LIFR in the endometrium on days 0 (estrus), 3, 6, 9, 12, 15, and 18 of the estrous cycle, and days 12, 15, 30, 60, 90, and 114 of pregnancy, in conceptuses on days 12 and 15, and in chorioallantoic tissues on days 30, 60, 90, and 114 of pregnancy in pigs. We also determined the effects of estrogen and progesterone on the expression of LIF and LIFR in endometrial tissues. Results: The expression of LIF increased in the endometrium during the late diestrus phase of the estrous cycle and during mid- to late- pregnancy, while the expression of LIFR increased during early pregnancy. The expression of LIF was induced by increasing doses of estrogen, whereas the expression of LIFR was induced by increasing doses of progesterone. Conclusion: These results indicate that the expression of LIF and its receptor LIFR in the endometrium is regulated in a stage-specific manner during the estrous cycle and pregnancy, suggesting that LIF and its receptor signaling system may play critical roles in regulating endometrial function in pigs.

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

Isolation and Characterization of Inducible Genes from Bombyx mori Injected with E. coli by Differential Screening (누에에의 차별화 선별을 통한 면역 관련 유도 유전자의 분리와 특성)

  • 김상현;제연호
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • To investigate the genes which is related to immune reaction of Bombyx mori, differential screening was carried out using naive and induced B. mori mRNA probe. To begin with, we constructed the cDNA library with mRNA isolated from fifth instar larvae injected with E. coli(4 X 106 cells/larva) using Uni ZAP XR vector kit. Thirty-two inducible cDNAs showing higher intensity on the induced mRNA probing membranes were selected. Partial nucleotide sequences of 29 clones were determined and their expessed sequence tags (ESTs) were produced. Nineteen ESTs in 29 ESTs were matched in GenBank database and the rest of them were found to be unknown. These unmatched ESTs were presumed to be novel genes. The nineteen ESTs contained variable genes related to biological process in Bombyx mori and four classes immune genes. Four clones, BmInc 6, 8, 18 and 27 were similar to two antibacterial peptide genes, hemolin gene and transferrin gene, respectively.

  • PDF

Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Hwang Han-Joon;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.247-255
    • /
    • 2006
  • Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.

TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets

  • Sun Murray Han;Hye Young Na;Onju Ham;Wanho Choi;Moah Sohn;Seul Hye Ryu;Hyunju In;Ki-Chul Hwang;Chae Gyu Park
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).