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Abstract A mathematical competition model between normal
flora and an invading pathogen was devised to allow analysis
of bacterial infections in a host. The normal flora includes the
various microorganisms that live on or within the host and act
as a primary human immune system. Despite the important
role of the normal flora, no mathematical study has been
undertaken on models of the interaction between it and
invading pathogens against a background of antibiotic treatment.
To quantify key elements of bacterial behavior in a host, pairs
of nonlinear differential equations were used to describe three
categories of human health conditions, namely, healthy, latent
infection, and active infection. In addition, a cutoff value was
proposed to represent the minimum population level required
for survival. The recovery of normal flora after antibiotic
treatment was also included in the simulation because of its
relation to human health recovery. The significance of each
simulation parameter for the bacterial growth model was
investigated. The devised simulation showed that bacterial
proliferation rate, carrying capacity, initial population levels,
and competition intensity have a significant effect on bacterial
behavior. Consequently, a model was established to describe
competition between normal flora and an infiltrating pathogen.
Unlike other population models, the recovery process described
by the devised model can describe the human health recovery
mechanism.
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The emergence of antibiotic-resistant bacteria is a problem
to both public health and the individual host. As bacterial
pathogens have become resistant to antibiotic treatments
because of the increasing use of antibiotics, the number of
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incurable bacterial diseases has been increasing [18]. Despite
the recent introduction of several new antibiotics and
enormous efforts to reduce the transmission of antibiotic-
resistant bacteria within hospitals and the community, the
incidence of antibiotic-resistant infections has continued to
increase [4]. Therefore, the optimal use of antibiotics and
proper health care policies are of key importance.

Mathematical modeling has been widely used to solve
this problem and thus has made substantial contributions to
our understanding of within-host microorganism population
dynamics and of the epidemiological dynamics of infections
[1,7,15-17,19]. Thus far, many researchers have evaluated
the relationships between antibiotic use and antimicrobial
resistance at the level of both an individual patient and a
community [2, 3, 5, 6, 8—10, 1214, 21, 22]. A particularly
interesting approach was reported by Webb et al. [22], who
proposed a two-level population model, which represents
the growth of plasmid-free (nonresistant) and plasmid-
bearing (resistant) bacteria, to quantify the key elements of
nosocomial (hospital acquired) infections. Frequently, a
bacterial pathogen is drug resistant because it has a plasmid
bearing one or more resistance genes. Such plasmids are
called R-plasmids (resistance plasmids). Once a bacterial
cell acquires an R-plasmid, it may be transferred to other
cells rapidly via normal gene exchange processes [20].
Indeed, the genes encoding drug resistance are present in
both bacterial chromosome and plasmids. In order to simplify
their model, Webb et al. [22] assumed that the emergence
of resistance could only occur through the acquisition of
plasmids, and other mechanisms (e.g., chromosomal mutation
and efflux pumps) were omitted.

Moreover, the normal flora is also of interest. The
interaction between a host and a microorganism is a dynamic
process in which each protagonist acts to maximize its
survival, The human race has many symbiotic microorganisms
that comprise the normal flora; approximately 10" individual
microbes exist in the normal human body [20]. In general,
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these symbiotic microorganisms occupy most of the niches
available in the host and are well adapted to utilize
available resources and nutrients, and thus they constitute
the microbial species. Moreover, the normal flora can
prevent pathogens from causing infections by microbial
antagonism. For example, symbiotic microorganisms prevent
pathogenic bacteria from growing by preoccupying a specific
niche. However, an upset in the microbial balance can result
in host infection by normally symbiotic microorganisms
[20]. Thus, although these microorganisms offer a degree
of protection from invading pathogens, they can become
pathogenic under certain circumstances. This phenomenon
is known as opportunistic infection [20]. However, in the
present study, it was assumed that only infiltrating pathogens
could cause disease and transfer R-plasmid. Thus, the normal
flora and infiltrated pathogens only act as beneficial and
harmful organisms, respectively. Therefore, behaviors of
normal flora can affect competition balance between the
dominant species and invading pathogens in the human
body. For this reason, modeling of within-host population
dynamics should consider the growth behavior of normal
flora. However, despite the importance of these organisms,
to the best of our knowledge, it has not been represented
by a mathematical characterization and no interaction
model is available describing the relations between normal
flora and invading pathogens.

In this paper, we propose a simple mathematical
competition model for normal flora and an invading
pathogen. In addition, the effects of antibiotics on both of
these components were investigated. The main aim of this
study was to understand how symbiotic organisms affect
pathogen colonization and which model parameters are
most effective in destroying pathogenic bacteria. In addition,
we investigated the recovery process of the proliferation
rate of the normal flora after antibiotic treatment.

MATERIALS AND METHODS

Model Description

To apply the concept of normal flora to a model, the Gause
(1934) competition model and the two-level bacterial
population model by Webb et al. [22] were combined and
modified. A schematic diagram of the competition model
between normal flora and pathogens in the host is shown in
Fig. 1. The three differential equations are as follows (1):
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Fig. 1. A schematic diagram of the within-host population
dynamics model.

Here, B is the proliferation rate, n the population level of each bacterial
species, and plus (+) and (-) represent plasmid-bearing (resistant) and plasmid-
free (nonresistant) bacteria, respectively. The subscript nm represents the
normal flora. Bk is the carrying capacity, T the recombination rate, y the
reversion rate, € the competition intensity of normal flora to the pathogens,
and 6 the competition intensity of a pathogen to the normal flora.

Equation (1) represents the growth behavior of plasmid-free
bacteria (1A), plasmid-bearing bacteria (1B), and normal
flora (1C), respectively. The growth patterns of bacteria
are interconnected with each other because the equation
for each bacterial growth shares the population level as a
common parameter. All the equations are changed to the
simulation sheet (MATLAB Simulink Ver. 6) in the shape
of a block diagram. As shown in Fig. 1, blocks connected
with arrows represent three bacterial types; e.g., normal
flora, and nonresistant and resistant bacteria. The arrows
represent flows that can be explained using some rate
parameters, such as recombination rate (t), reversion rate
(v), and competition intensities (g, 6). The descriptions of
model parameters are as follows:

N, N7, and n' represent each population level of normal
flora, plasmid-free bacteria, and plasmid-bearing bacteria,
respectively. Thus, n”/(n™+n") is the fraction of plasmid-free
bacteria, and n"/(n™+n") the fraction of plasmid-bearing
bacteria. [3 is the proliferation rate of each population in the
host, and Px is the carrying capacity (the total tolerable
bacteria load). y is the reversion rate of the plasmid-bearing
bacteria to plasmid-free ones, and thus y n" describes the
reversion process. Let T be the recombination rate of the
plasmid-free and plasmid-bearing bacteria. Then, tn'n"/
(n™+n") represents the recombination process. { is the cut-
oft value of the minimum population level for survival,
and the parameters € and & are the competition intensities.
Specifically, € is the effect of normal flora on the growth of
pathogens, and 9 is the effect of pathogen on the growth of
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normal flora. The competition intensity is a concept similar
to Gause’s competitive exclusion principle, as normal flora
and pathogens use resources in precisely the same way,
and thus cannot coexist. Therefore, one species will drive
the other into extinction with an intensity level.

Cutoff Value
Although an ordinary differential equation-based model is
suitable for evaluating population dynamics or a time-
dependent system, some complementary programming is
needed to obtain reasonable data from the simulation. In
the present study, a cutoff value is proposed to represent
the minimum population level required for survival, which
is similar to the concept underlying the Allee effect [11].
Usually, the analytical solution of an ordinary differential
equation is in the form of an exponential. The bacterial
population concerned will fall to zero if the value of the
overall differential equation is negative as time approaches
infinity. This means that in order to totally eliminate the
pathogen, antibiotic treatment (the equation value is negative
at infinity) is required for an infinite time. In addition, if
a population level decreases to below 1, an exponential
equation would return non-integer results, which is unrealistic.
Figs. 2A and 2B show a comparison without and with the
cut-off value, respectively.

Fig. 2B shows that extinguished bacteria cannot grow
again. However, Fig. 2A shows that the population level of
the bacteria increases even after the plasmid-free bacteria

have been eliminated. This demonstrates that a simulation
model without a cutoff value produces non-integer population
levels at below a population of 1. For this reason, a cutoff
value should be considered in the programming procedure
in order to prevent wrong simulation results. Thus, in the
present study, a bacteria is assumed to be absent after its
level falls below 1. Therefore, bacteria counts were subjected
to a cutoff value of 1 in our study.

RESULTS AND DISCUSSION

Health Condition Classification

One of the main advantages of this model is its ability to
describe a phenomenon intuitively when parameter values
are suitably modified. In order to examine the relationship
between a bacterial infection and a human health condition,
the following three different classifications of individual
health were used: normal health, latent infection, and
active infection. This classification is important not only in
terms of epidemiology but also in terms of the spreading
mechanism of resistant bacteria, because the degree of
pathogenic infiltration in the human body depends on
individual health. Usually, most people in the community
are healthy, which means that healthy people can suitably
protect themselves against pathogenic bacteria. Conversely,
pathogens can more easily infiltrate the body when health
is depressed for some reason.
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Fig. 2. The effect of cutoff value being applied (B) or not (A).
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Only nonresistant bacterial behavior is shown. Here, $7=8 In (2), p~=-2 after treatment, k=10", initial population level=100, and cutoff value=1. Antibiotic
treatment began on day 10 and lasted for 30 days. Note that the population increases again after 33 days even though the population was below 1 (bacteria
eliminated) (A). In contrast, the treatment was successful in eliminating the nonresistant bacteria (B).
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Fig. 3. Behavior of the normal flora (dotted line), and of
nonresistant (dashed line) and resistant (straight line) bacteria of
normal status.

The parameters are B,,=6 In(2), =6 In(2), B=4 In(2), 1=0.001,
¥=0.00001, £=1.2, =0.4, and all k=10". The initial population of the
normal flora was 10" and those of the two pathogens 100 apiece. Although
the resistant bacteria have the same proliferation rate as the normal flora,
the resistant strain was eliminated owing to the high initial population level
of the normal flora.

A normal status means that a host is healthy. This
indicates that the normal flora is the dominant bacteria in
the host, and maintains equilibrium with the host immune
system. Therefore, although the pathogens infiltrate the
host, they will be extinguished as a result of the strong
normal flora (Fig. 3). As shown in Fig. 3, the proliferation
rates of normal flora, resistant bacteria, and nonresistant
bacteria were set at 6In(2), 6In(2), and 4In(2), respectively.
The proliferation rate is a primary parameter of population
growth. In other words, even if the initial population of a
group of bacteria is low, it can become the dominant species if
it has a high proliferation rate. Fig. 3 shows an interesting
result; i.e., even when the proliferation rates of normal
flora and resistant bacteria are the same, the former remains
as the dominant species because its initial population is
higher than that of other species.

The latent infectious status is when infiltrated pathogens
just maintain their population and do not cause any
symptoms in their host. However, the pathogens can
initiate an infection if the health of a host is depressed or
they can exploit some weakness in the immune system.
Fig. 4 shows that pathogens will persist and converge to a
steady state under this condition. This result also shows an
interesting growth characteristic of plasmid-free bacteria.
When bacteria infiltrate a host, the nonresistant bacterial
population level falls to less than 1 because of competition
with the normal flora. Hence, the nonresistant bacteria
vanish. However, as shown in Fig. 4, nonresistant bacteria
would emerge again after 10 days even after applying the
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Fig. 4. Behavior of the normal flora (dotted line), and of
nonresistant (dashed line) and resistant (straight line) bacteria of
latent status.

The parameters are B,,=6 In(2), B'=8 In(2), B=4 In(2), 1=0.001,
¥=0.00001, e=1.2, =0.4, and all x=10". Initial population of the normal
flora was 10" and those of the two pathogens were 100 apiece.
Interestingly, the extinguished nonresistant bacteria re-emerged owing to a
reversion process, even though cutoff parameters had been applied to the
simulation. In this case, the infiltrated pathogen will persist and converge
to a steady state owing to competition with the normal flora.

cutoff parameter. This phenomenon might be caused by a
reversion process of the pathogenic bacteria. More precisely, a
bacterium containing a plasmid may revert to a bacterium
without a plasmid, the so-called reversion process [22]. On
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Fig. 5. Behavior of normal flora (dotted line), and nonresistant
(dashed line) and resistant (straight line) bacteria during acute
infection.

The parameters are B..=5 In(2), B'=9 In(2), B=8 In(2), 1=0.001,
¥=0.00001, &=1.3, 5=0.5, and all x=10". The initial population of the
normal flora was 10' and of the two pathogens 100 each. Resistant
bacteria overcame normal flora, and became the dominant species.
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the other hand, when a bacterium with a plasmid combines
with a bacterium not carrying the plasmid, both of the bacteria
can have the plasmid, which is called a recombination
process [22]. Therefore, although an infiltrated pathogen
vanishes for various reasons, it can emerge again as a result
of a reversion or recombination process of the same species
that has not vanished. The reversion rate used in this study
was 0.00001, which means that 0.001% of the total resistant
bacteria can lose their R-plasmid and become nonresistant.
Moreover, the recombination rate is higher than the reversion
rate because the acquiring process of R-plasmid is a survival
problem to the bacteria under the antibiotic treatment

Population
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condition. Hence, the reversion rate used in this study was
lower than the recombination rate by 100 times (t=0.001).

Fig. 5 shows that the proliferation rate of resistant
bacteria is higher than that of the normal flora. Thus,
infiltrating resistant bacteria are destined to overcome the
dominant normal flora within a host. After 20 days, the
population of the resistant bacteria reaches their carrying
capacity, and resistant bacteria have or induce deleterious
effects to the host. The end result may be disease. This
is known as the active infectious status, and antibiotic
treatments are required at this time to prevent the pathogen
from becoming the dominant species in a host.
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Fig. 6. Various patterns of bacterial behavior according to disease status. Acute infection status before antibiotic treatment (A),
bacterial behavior when broad-spectrum antibiotics are administered (B), and narrow-spectrum antibiotic effect (C).

Antibiotic treatment was started on day 20 and lasted 30 days. The parameters are ,,,=4 In(2), B"=7 In(2), B=8 In(2), 1=0.001, y=0.00001, £=1.3, §=0.5, and
all k=10". In B, normal flora (dotted line) showed a tendency to be reduced by broad-spectrum antibiotics during the treatment period. After antibiotic
treatment (after 30 days), normat flora may not be the dominant species. For narrow-spectrum antibiotic treatment, in C, normal flora were not affected by
antibiotics and maintained their population level. However, normal flora did not recover to normal dominant species, and instead showed a decreasing
tendency because of the nonresistant bacteria (dashed line) and resistant bacteria (straight line), after treatment.
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Antibiotic Treatment Strategies

In the previous section, the competition and growth behavior
of normal flora and pathogens in the absence of antibiotic
treatment was investigated. Pathogenic bacteria were either
eliminated or controlled by the normal flora. An antibiotic
treatment is required when a beneficial human microorganism
is depressed by an infiltrating pathogen and results in an
active infectious status. In order for an antibiotic treatment
to be successful, it must kill or inhibit the pathogen while
producing little or no damage to the host. If antibiotics
were treated to the host with extreme dosage, then not only
pathogen but also normal flora can be damaged. This is
why the concept of cutoff value was used, as this prevents
the re-emergence of eliminated bacteria, and the concept of
normal flora is used to prevent the overuse of antibiotics.
Antibiotics were classified into two categories: narrow-
and broad-spectrum. Narrow-spectrum drugs are effective
only against a limited variety of pathogens, whereas broad-
spectrum drugs attack many different types of pathogens.
In addition, similarities between pathogen types also need
to be considered when treating infections with antibiotics.
For example, if the normal flora and pathogen are of
the same species, the antibiotics are likely to affect both
equally. On the other hand, a broad-spectrum drug can
affect both even when the normal flora and pathogen
belong to different species. In order to avoid confusion, we
assumed that the normal flora and the infiltrating pathogen
are of different species. Fig. 6 shows the effect of an
antibiotic treatment, and Fig. 6A shows active infectious
status before antibiotic treatment. After 10 days, resistant
bacteria caused disease, while the nonresistant bacteria
vanished in backgrounds of normal flora and nonresistant
bacteria. Broad- and narrow-spectrum drugs were also
examined to compare the effects of antibiotic ranges.
Figs. 6B and 6C show the effect of a broad-spectrum drug
and narrow-spectrum drug, respectively, on infectious status.
The broad-spectrum drug affected both the normal flora
and nonresistant bacteria. However, because the normal
flora has a lower rate of proliferation than nonresistant
bacteria, the nonresistant bacteria predominates after treatment
(Fig. 6B). ’

Fig. 6C shows that narrow-spectrum drug administration
affected the pathogen without affecting the normal flora.
As shown in Fig. 6C, the growth of the normal flora
actually increased slightly during treatment because of the
effects of antibiotics on nonresistant bacteria. However,
after treatment, normal flora were re-depressed because of
competition.

Recovery of Normal Flora After Treatment

The previous section showed the effects of a range of
antibiotics. However, after treatment with either a narrow-
or broad-spectrum drug, nonresistant bacteria became
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Fig. 7. The normal flora recovery process after antibiotic
treatment. : '

The parameters used were B,,=4 In(2), =7 In(2), f=8 In(2), 1=0.001,
v=0.00001, e=1.3, 8=0.5, and all k=10". Note that proliferation rate
recovery was set to By an—8 In(2). Unlike the growth patterns shown by
normal flora (dotted line) in Fig. 6C, its population recovered to carrying
capacity, and resistant (straight line) and nonresistant (dashed line) bacteria
were eliminated by this recovery.

the dominant species. This means that a permanent cyclic
antibiotic treatment is required, because nonresistant bacteria
can emerge again periodically after treatment. Such a
phenomenon may appear to be unrealistic. For example,
normal healthy people, can overcome disease caused by
an infiltrating pathogen via their own immune systems and
proper medical treatment. However, it explains what can
occur if host immunity has been depressed by some
congenital or acquired factor. Nevertheless, it is not
appropriate to expand this generally to those infected with
a pathogen for a short time. In general, most healthy
people maintain a high proliferation rate and population
of normal flora (healthy status; Fig. 3). A pathogen can
proliferate when the immune system is weakened; ie.,
when the proliferation rate of normal flora is depressed.
Therefore, the proliferation rate of normal flora may aid
recovery to the healthy state if antibiotics block the pathogen.
Fig. 7 shows a successful treatment that eliminated a
pathogen because of the proliferation rate recovery of the
normal flora after antibiotic treatment. Unlike Fig. 6C,
Fig. 7 shows that the population of the normal flora
recovered to carrying capacity after antibiotic treatment,
and both pathogens had vanished as a result.

In this study, we developed a simple within-host dynamic
simulation model to investigate competition between the
normal flora and an infiltrating pathogen in the presence
of antibiotic. The described competition model between
the normal flora and a pathogen was based on Gause’s
competitive exclusion principle. The main advantage of
this approach is that it allows the intuitive and realistic
behavior of bacterial species in an infected host to be
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modeled. Simulation results showed that the normal flora
can be depressed by antibiotics and other pathogens, and
suggest that the normal flora should be considered when
devising optimal antibiotic treatment strategies. Some
errors in the previous simulation models can lead to the
incorrect modeling of bacterial behavior. Therefore, a
cutoff value was applied in the present study to the re-
emergence of previously eliminated bacteria.

Three categories, normal, latent infection, and active
infection, were used to investigate bacterial behavior under
different health conditions. It was assumed that a pathogen
can proliferate when the immune system is weakened,
and thus, these classifications describe more realistically
bacterial infections in the host. After antibiotic treatment,
some pathogenic bacteria may persist or even become
dominant species. This phenomenon was shown in some
cases of bacterial infection models [1-3, 9, 22]. The recovery
of the proliferation rate of normal flora was introduced into
the model in consideration of the human health recovery
mechanism in population dynamics. As a result, infiltrated
pathogens were successfully removed, owing to the recovery
of the proliferation rate of the normal flora. Unlike previous
models, the described model can be used to describe not
only bacterial interactions within the human body but also
the spread of antibiotic-resistant microorganisms in the
community, because of the introduction of the normal flora
concept. Thus, we suggest that the normal flora should be
considered in the fields of host population dynamics and
pharmacodynamics.
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