• Title/Summary/Keyword: biological hydrogen

Search Result 525, Processing Time 0.033 seconds

Removal of heavy metal and Hydrogen sulfide/Nitrophenol using Mackban-stone (맥반석을 이용한 중금속과 악취물질/nitrophenol의 제거)

  • Quen, Zhe-Xue;Yin, Cheng-Ri;Jin, Yin-Shu;Seok, Mi-Soo;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2001
  • Mackban-stone effectively removed heavy metals, such as Fe, Cu, Cd, and Zn, with best removal of Fe and Cu. And the removal of heavy merals related with ion exchange of Ca. Mackban-stone is also an efficient deodorant of hydrogen sulfide and ammonia and inhibited the growth of E coli. The degradation rare of 4-nitropheno1 by Nocardioides sp. PNP101 and 2,4-dinitrophenol by Strain CJ1 and Rhodococcus sp. DNP 505 are increased by Mackbane-srone.

  • PDF

Biological hydrogen production using Chlamydomonas reindardtii biomass (Chlamydomonas reinhardtii 바이오매스를 이용한 생물학적 수소생산)

  • Kim, Mi-Sun;Baek, Jin-Sook;Kim, Sun Chang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.309-316
    • /
    • 2004
  • Chlamydomonas reinhardtii UTEX 90 was cultivated with continuous supply of 2% $CO_2$ using TAP media at $25^\circ{C}$ and produced biomass 1.18 g of dry cell weight/L for 4 days. C. reinhardtii algal biomass(CAB) was concentrated to 20 times by volume and converted into hydrogen and organic acids by anaerobic fermentation using Clostridium butyricum. Organic acids in the fermentate of CAB were consecutively used to produce hydrogen by Rhodobacter sphaeroides KD 131 under the light condition. Approximately 52% of starch in the concentrated CAB which had 4-5.8, 24-26 and 6-7 g/L of starch, protein and fat, respectively was degraded by Cl. butyricum at $37^\circ{C}$. During this process, hydrogen and some organic acids, such as formate, acetate, propionate, and butyrate, respectively were produced. Further conversion of the organic acids in anaerobic fermentate of CAB by Rb. sphaeroides KD131 produced hydrogen from the anaerobic fermentate under the illumination of 8 klux using halogen lamp at $30^\circ{C}$. The result showed that hydrogen was evolved by the anaerobic conversion using Cl. butyricum and then by the photosynthetic fermentation using Rb. sphaeroides KD131. It indicated that the two-step conversion process produced the maximum amount of hydrogen from algal biomass which contained carbohydrate, protein, and fat via organic acids.

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles (수소연료전지 차량 충전에서의 압력강하 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.

Synthesis and Identification of Novel Pyrazoline and Its Anti-cancer Property (새로운 피라졸린 화합물의 합성과 구조결정 및 항암효과)

  • Koh, Dong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.143-146
    • /
    • 2011
  • Novel pyrazoline (4) was synthesized from chalcone (3) which was prepared from 2'-hydroxy-l'acetonaphthone (1) and 4-methoxy benzaldehyde (2). Pyrazoline (4) forms resonance assisted hydrogen bond between naphthol hydroxyl group and imine nitrogen in a pyrazoline ring. Pyrazoline (4) shows Poly ADP-ribose Polymerase (PARP) cleavage ability as a proof of apoptosis in cancer cell, which reveals its anti-cancer property.

Development of analytical method for the isotope purity of pure D2 gas using high-precision magnetic sector mass spectrometer

  • Chang, Jinwoo;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • Deuterium (D) is an isotope with one more neutron number than hydrogen (H). Heavy elements rarely change their chemical properties with little effect even if the number of neutrons increases, but low-mass elements change their vibration energy, diffusion rate, and reaction rate because the effect cannot be ignored, which is called an isotope effect. Recently, in the semiconductor and display industries, there is a trend to replace hydrogen gas (H2) with deuterium gas (D2) in order to improve process stability and product quality by using the isotope effect. In addition, as the demand for D2 in industries increases, domestic gas producers are making efforts to produce and supply D2 on their own. In the case of high purity D2, most of them are produced by electrolysis of heavy water (D2O), and among D2, hydrogen deuteride (HD) molecules are present as isotope impurities. Therefore, in order to maximize the isotope effect of hydrogen in the electronic industry, HD, which is an isotope impurity of D2 used in the process, should be small amount. To this end, purity analysis of D2 for industrial processing is essential. In this study, HD quantitative analysis of D2 for high purity D2 purity analysis was established and hydrogen isotope RM (Reference material) was developed. Since hydrogen isotopes are difficult to analyze with general gas analysis instrument, they were analyzed using a high-precision mass spectrometer (Gas/MS, Finnigan MAT271). High purity HD gas was injected into Gas/MS, sensitivity was determined by a signal according to pressure, and HD concentrations in two bottles of D2 were quantified using the corresponding sensitivity. The amount fraction of HD in each D2 was (4518 ± 275) μmol/mol, (2282 ± 144) μmol/mol. D2, which quantifies HD amount using the developed quantitative analysis method, will be manufactured with hydrogen isotope RM and distributed for quality management and maintenance of electronic industries and gas producers in the future.

Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture

  • Jun, Yoon-Sun;Yu, Seung-Ho;Ryu, Keun-Garp;Lee, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1130-1135
    • /
    • 2008
  • The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).

Hydrogen Evolution through Mixed Continuous Culture of Rhodopseudomonas sphaeroides and Clostridium butyricum (Rhodopseudomonas sphaeroides와 Clostridium butyricum의 혼합배양을 통한 수소생성의 연속발효계)

  • Go, Young-Hyun;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 1999
  • The purpose of this study was to optimize the conditions of continuous mixed culture of C.butyricum and R. spaeroides K-7, which were able to produce hydrogen using biomass-dreived substrate. To investigate the possibility of continuous culture, semi-continuous culture was carried out for 20 days. In semi-continuous culture using the reactor system, the replacement rate of fresh medium was 30% of total medium volume for the highest hydrogen evolution. In continuous culture, the optimum dilution rate was determined to be 0.05$h^{-1}$. The continuous culture produced 3.1 times as compared with the hydrogen on batch culture. On the other hand, the continuous mixed culture produced 1.3~2.1 times as much as hydrogen of the continuous monoculture of C. butyricum. When 10g of glucose in the media (1l) was supplied as a carbon source on continuous culture, mixed culture of C. butyricum and R. sphaeroides K-7 increased hydrogen evolution rate. Because considerable amount of glutamate was contained in waste water of glutamate fermentation, utilization of glutamate was examined in mixed culture. As a result of examination, production of hydorgen was slightly inhibited by high concentration of glutamate, more than 20mM, on continuous monoculture of R. sphaeroides K-7. On the other hand, both on continuous monoculture of C. butyricum and on mixed culture of C. butyricum and R. sphaeroides K-7, production of hydrogen was not inhibited by high concentration of glutamate such as 100mM. Hence this suggests that high concentration of waste water can be used as good substrate for hydrogen production on monoculture of C. butyricum and mixed culture of C. butyricum and R. sphaeroides K-7.

  • PDF

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.