DOI QR코드

DOI QR Code

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles

수소연료전지 차량 충전에서의 압력강하 분석

  • Hyo Min Seo (Dept. of Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Byung Heung Park (Dept. of Chemical and Biological Engineering, Korea National University of Transportation)
  • 서효민 (한국교통대학교 화공생물공학과) ;
  • 박병흥 (한국교통대학교 화공생물공학과)
  • Received : 2022.09.29
  • Accepted : 2023.01.10
  • Published : 2023.03.31

Abstract

In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.

수소연료전지 차량 충전 과정에서, 충전소에서의 공급압력과 차량 내 저장 탱크의 압력 차이에 의해 수소가 흐르게 되고 유량은 압력 차에 의존한다. 따라서 충전 과정에서 발생하는 수소의 압력강하에 대한 고려는 필수적이며 이의 분석을 통해 수소 충전 과정의 효율성을 높일 수 있다. 본 연구에서는 충전라인 중 호스, 노즐/리셉터클, 파이프, 밸브에 대하여 압력강하를 분석하였다. 호스와 파이프는 도관에서의 압력강하로, 노즐/리셉터클은 흐름 노즐 식으로, 밸브는 기체 유량 식으로 계산하였다. 또한 각 구성요소에서 발생하는 압력강하 효과를 종합 분석한 결과 전체 충전라인에서 압력강하에 가장 큰 영향을 주는 요소는 밸브에서의 압력강하임이 밝혀졌다. 이번 연구는 추후 수소 충전을 포함한 수소 유동 해석으로 수소 충전 과정의 모델 개발에 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제(No. 20203010040010)로 지원에 감사드립니다.

References

  1. Chae, C. K., Kang, S. Y., Kim, H. N., Chae, S. B. and Kim, Y. G., " Evaluation of Influential Factors of Hydrogen Fueling Protocol by Modeling and Simulation", Trans. of the Korean hydrogen and new energy society, 30(6), 513-522, (2019)
  2. Chae, C. K., Kim, Y. G. and Chae, S. B., " An Analysis of the Effect of Pressure Ramp Rate on the Major Parameters of the Standard Hydrogen Fueling Protocol", KIGAS, 24(1), 23-32, (2020)
  3. Society of Automotive Engineers (SAE), "Fueling protocols for light duty gaseous hydrogen surface vehicles (Standard J2601_202005)", (2020)
  4. Xu, G. D., Pareek, K. P., Li, N., and Cheng, H. S., "High capacity hydrogen storage at room temperature via physisorption in a coordinatively unsaturated iron complex", Int. J. Hydrogen Energy, 40, 16330-16337, (2015) https://doi.org/10.1016/j.ijhydene.2015.09.132
  5. Pareek, K. P., Rohan, R. P. S., Chen, Z. X., Zhao, D., and Cheng, H. S., "Ambient temperature hydrogen storage in porous materials with exposed metal sites", Int. J. Hydrogen Energy, 42, 6801-6809, (2017) https://doi.org/10.1016/j.ijhydene.2017.01.209
  6. Hua, T. Q., Ahluwalia, R. K., Peng, J.K., Kromer. M. , Lasher, S., McKenney, K., Law, K., and Sinha, J., "Technical assessment of compressed hydrogen storage tank systems for automotive applications", Int. J. Hydrogen Energy, 36, 3037-3049, (2011) https://doi.org/10.1016/j.ijhydene.2010.11.090
  7. Ahluwalia, R. K., Hua, T. Q., and Peng, J. K., "On-board and Off-board performance of hydrogen storage options for light-duty vehicles", Int. J. Hydrogen Energy, 37, 2891-2910, (2012) https://doi.org/10.1016/j.ijhydene.2011.05.040
  8. He, C. M., Yu, R., Sun, H. R., and Chen, Z. L., "Lightweight multilayer composite structure for hydrogen storage tank", Int. J. Hydrogen Energy, 41, 15812-15816, (2016) https://doi.org/10.1016/j.ijhydene.2016.04.184
  9. Li, M. X. O., Bai, Y. F., Zhang, C. Z., Song, Y. X., Jiang, S. F., Grouset, D. D., and Zhang, M. J., "Review on the research of hydrogen storage system fast refueling in fuel cell vehicle", Int. J. Hydrogen Energy, 44, 10677-10693, (2019) https://doi.org/10.1016/j.ijhydene.2019.02.208
  10. Maus, S., Hapke, J., Ranong, C. N., Wuchner, E., Friedlmeier, G., and Wenger, D., "Filling procedure for vehicles with compressed hydrogen tanks", Int. J. Hydrogen Energy, 33, 4612-4621, (2008) https://doi.org/10.1016/j.ijhydene.2008.06.052
  11. Lee, H. W., Oh, D. H. and Seo, Y. J., "Prediction of Changes in Filling Time and Temperature of Hydrogen Tank According to SOC of Hydrogen", Trans. of the Korean hydrogen and new energy society, 31(4), 345-350, (2020) https://doi.org/10.7316/KHNES.2020.31.4.345
  12. Park, B. H., "Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State", Trans. of the Korean hydrogen and new energy society, 30(5), 385-394, (2019)
  13. Noh, S. G., "Estimation of Hydrogen Filling Time Using a Dynamic Modeling", Trans. of the Korean hydrogen and new energy society, 32(3), 189-195, (2021) https://doi.org/10.7316/KHNES.2021.32.3.189
  14. Cebolla, R.O., Acosta, B., Moretto, P., and Miguel, N. D., "GASTEF: The high pressure gas tank testing facility of the European commission joint research centre", Int. J. Hydrogen Energy, 44, 8601-8614, (2019). https://doi.org/10.1016/j.ijhydene.2019.01.207
  15. Cebolla, R.O., Acosta, B., Moretto, P., Frischauf, N., Harskamp, F., Bonato, C., and Baraldi, D., "Hydrogen tank first filling experiments at the JRC-IET GasTeF facility", Int. J. Hydrogen Energy, 39, 6261-6267, (2014) https://doi.org/10.1016/j.ijhydene.2013.10.038
  16. Acosta, B., Moretto, P., Miguel, N. D., Ortiz, R., Harskamp, F., and Bonato, C., "JRC reference data from experiments of on-board hydrogen tanks fast filling", Int. J. Hydrogen Energy, 39, 20531-20537, (2014) https://doi.org/10.1016/j.ijhydene.2014.03.227
  17. Baek, J. U., Gwak, G. M., Kim, N. Y., Cho, Y. M. and Lyu, S., K., "Study on the Optimal Design of the Nozzle Shape of the 700 bar Hydrogen Refueling Nozzle for Hydrogen Electric Vehicles", KSMPE, 21(7), 28-33, (2022) https://doi.org/10.14775/ksmpe.2022.21.07.028
  18. Poling, B. E., Prausnitz, J. M., and O'connell, J. P., The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, (2001)
  19. Park, B. H. and Chae, C. K., "Development of Correlation Equations on Hydrogen Properties for Hydrogen Refueling Process by Machine Learning Approach", Int. J. Hydrogen Energy, 47, 4185-4195, (2022) https://doi.org/10.1016/j.ijhydene.2021.11.053
  20. Park, B. H. and Lee, D. H., "Flow Analysis and Development of a Model to Simulate Transient Temperature of Hydrogen from Pre-cooler to On-board Storage Tank during Hydrogen Refueling", Korean J. Chem. Eng., 39, 902-912 , (2022) https://doi.org/10.1007/s11814-022-1085-4
  21. Nam, C. W., Kim, R. M. and Kim, H. H., " A Numerical Study Of Flow Control Valve to Flow Characteristics by Pressure Difference for Hydrogen Station", KIGAS, 25(2), 22-33, (2021)