• 제목/요약/키워드: biological and chemical controls

검색결과 49건 처리시간 0.032초

Automation of Solid-state Bioreactor for Oyster Mushroom Composting

  • Lee, Ho-Yong;Kim, Won-Rok;Min, Bong-Hee
    • Mycobiology
    • /
    • 제30권4호
    • /
    • pp.228-232
    • /
    • 2002
  • This study focused on the production of high quality compost for the growth of aero-thermophilic fungi, which has a promoting effect on the growth rate and production of oyster mushrooms. The automated solid-state bioreactor system was designed on the basis of a Three-Phase-One system, which controls the serial steps of prewetting, pasteurization and fermentation processes. High numbers of thermophilic fungi and bacteria were recovered from the mushroom composts prepared by this solid-state bioreactor. The rates of composting process were depended on physical as well as chemical factors. Among these factors, the parameters of moisture content and temperature were found to be particularly important. In our automated system, constant levels of moisture content, temperature and ventilation via mixing were provided by a centralized control apparatus including PLC, water tank and water jacket systems. These features induced higher microbiological activity of aero-thermophiles.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • 제50권5호
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

  • Nam, Hyo Song;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제34권3호
    • /
    • pp.241-249
    • /
    • 2018
  • Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above $1{\times}10^8$ colony forming units/g after storage of the powder at $25^{\circ}C$ for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

Effects of Several Effective Microorganisms (EM) on the Growth of Chinese cabbage (Brassica rapa)

  • Hussein, Khalid A.;Joo, Jin-Ho
    • 한국토양비료학회지
    • /
    • 제44권4호
    • /
    • pp.565-574
    • /
    • 2011
  • The development of satisfactory alternatives for supplying the nutrients needed by crops could decrease the problems associated with conventional NPK chemical fertilizers. In this study, the effects of bacterial and fungal effective microorganisms (EM) on the growth of Chinese cabbage (Brassica rapa) were evaluated. This investigation was carried out parrallel with conventional NPK chemical fertilizer and a commercial sold microbial fertilizer to compare between each of their effect. Sterile water and molasses were served as controls. Azotobacter chroococcum effect also was studied either alone or in combination with the effective microorganisms on the growth parameters. In contrast to the bacterial EM, the fungal EM alone without A. chroococcum had a more stimulating effect than fungal EM combined with A. chroococcum. Results showed that seedling inoculation significantly enhanced B. rapa growth. Shoot dry and fresh weight, and leaf length and width significantly were increased by both bacterial and fungal inoculation. The results indicated that the NPK chemical fertilizer deteriorates the microflora inhabiting the soil, while the effective microorganisms either fungal or bacterial ones increased the microbial density significantly. This study implies that both of fungal and bacterial EM are effective for the improvement of the Chinese cabbage growth and enhance the microorganisms in soil. The results showed antagonism occurred between A. chroococcum and each of Penicillium sp and Trichoderma sp in both agar and plant assays. The data were statistically analyzed by ANOVA and Dunnett test.

Biomedical Laboratory: Its Safety and Risk Management

  • Tun, Tin
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.155-160
    • /
    • 2017
  • Biomedical laboratory is full of risks. Risk could be biological, chemical, radioactive, mechanical, physical, fire and electrical. All possible risks need to be identified, evaluated and controlled. A risk management system must be in place to prevent accident or loss of lives and to improve overall workplace safety and productivity. Safety in laboratory is a combination of appropriate risk management system, engineering controls and technical facilities, administrative controls and safety procedures and practices. Laboratory safety culture must be developed so that exposure to hazards for laboratory personnel, community and environment will be minimized or eliminated. In this review, importance of safety in a biomedical laboratory and risk management will be discussed.

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface

  • Cha, Yoo Lim;Park, Il Han;Moon, Kyung Hwan;Kim, Dong Hwan;Jung, Seung Il;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.618-624
    • /
    • 2018
  • We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.

FECAL BOLl COUNT, A NEW CRITERIA FOR EVALUATING THE ANTI-STRESS EFFECT OF GINSENG

  • Chang Y.S.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1993년도 학술대회지
    • /
    • pp.164-170
    • /
    • 1993
  • Panax ginseng has been reported to protect animals or to help them recover from physical, chemical, or biological stress. The antistress effects of ginseng were evaluated through the measurement of adrenal ascorbic acid, rectal temperature, and plasma level of glucose. lipids and corticosterone. During the treadmill experiments of the antifatigue study, the groups of rats receiving P. ginseng or P. quinquefolius extracts were consistently found to leave fewer fecal boli on the wheel compared with controls. This phenomenon may be due to the reported antistress effects of ginseng. Another possibility could be that the Panax species examined produced anticholinergic effects which in turn inhibited the production of fecal boli. After an anticholinergic study. employing physostigmine and atropine as controls, anticholinergic effect was found not essential for the decrease of fecal boli number left on the wheels during antifatigue studies. The results were consistent with the antistress activity reported previously. Even though the active constituents responsible for the antistress effects of ginseng remained to be determined, the fecal boli counts for stressed rats can be employed as a new protocol for evaluating the antistress effects of ginseng.

  • PDF

Chemical and Biological Controls of Balloon Flower Stem Rots Caused by Rhizoctonia solani and Sclerotinia sclerotiorum

  • Lee, Young-Hee;Cho, Young-Son;Lee, Shin-Woo;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.156-163
    • /
    • 2012
  • Stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum have been known as devastating diseases in balloon flower plants. Antifungal activities of four fungicides, azoxystrobin, polyoxin B, trifloxystrobin and validamycin A were evaluated in vitro, showing effective suppression with mycelial growth of the fungal isolates on PDA media. Efficacies of the four fungicides were also demonstrated in stem tissues of balloon flower plants against R. solani and S. sclerotiorum. A commercially available Bacillus subtilis strain Y1336 was tested in terms of antagonistic biological control of stem rot disease of balloon flower plants. The bacterial strain revealed its antifungal activities against R. solani and S. sclerotiorum demonstrated by dual culture tests using paper discs and two plant pathogenic fungi on PDA media, as well as by plant inoculation assay, indicating that this antagonistic bacterial strain can be incorporated into disease management program for balloon flower stem rot diseases together with the four chemical fungicides.

Algin-Impregnated Vascular Graft II. Preliminary Animal Study

  • Jin Ho Lee;Byu
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권3호
    • /
    • pp.157-164
    • /
    • 1991
  • Microvel $^{\textregistered}$ double velour graft impregnated with a biodegradable algin was studied as a new vatscular graft. It is impervious to blood but still retains high porosity. This graft does not require preclotting during implantation and has good tissue ingrowth and biological healing properties. Two vascular grafts impregnated with algin (6mm in diameter) were implanted in the aorta of mongrel dogs without preclotting. Two identical grafts were preclctted and served as controls. The grafts were harvested 2 and 4 months postoperatively, and the healing pattern was examined by a light microscope after hemRtoxylineosin staining. It was observed that endothelial cells were incompletely covered on both algin-impregnated and control grafts after 2 month Implantation, while they were fully covered on both grafts after 4 month. There were no significant differences in subendothelial granulation tissue organization and fibrinoid material absorption between the algin-impregnated and control grafts. The algin-impregnated graft did not show any harmful effect on the healing and thus can be a new promising graft which is not necessary preclotting during the implantation.

  • PDF