Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.6.09

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface  

Cha, Yoo Lim (Department of Chemical and Biological Engineering, Gachon University)
Park, Il Han (Future Industry R&D Center, DH Holdings Co., LTD)
Moon, Kyung Hwan (Future Industry R&D Center, DH Holdings Co., LTD)
Kim, Dong Hwan (Future Industry R&D Center, DH Holdings Co., LTD)
Jung, Seung Il (Future Industry R&D Center, DH Holdings Co., LTD)
Yoon, Young Soo (Department of Chemical and Biological Engineering, Gachon University)
Publication Information
Abstract
We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.
Keywords
Chemical properties; Microstructure; $TiO_2$; Fuel cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Kim, X. H. Zhang, J. D. Kim, and S. I. Jung, "Fabrication and Characterization of Highly Crystalline and Stable Phase-Pure Rutile Nanowires," J. Nanosci. Nanotechnol., 12 [8] 6327-32 (2012).   DOI
2 J. H. Kim, X. H. Zhang, J. D. Kim, H. M. Park, S. B. Lee, J. W. Yi, and S. I. Jung, "Synthesis and Characterization of Anatase $TiO_2$ Nanotubes with Controllable Crystal Size by a Simple MWCNT Template Method," J. Solid State Chem., 196 435-40 (2012).   DOI
3 D.-S. Seo, J.-K. Lee, and H. Kim, "Preparation of Nanotube-shaped $TiO_2$ Powder," J. Korean Ceram. Soc., 37 [7] 700-4 (2000).
4 H. Ogihara, S. Masahiro, Y. Nodasaka, and W. Ueda, "Synthesis, Characterization and Formation Process of Transition Metal Oxide Nanotubes Using Carbon Nanofibers as Templates," J. Solid State Chem., 182 [6] 1587-92 (2009).   DOI
5 N. D. Hoa, N. V. Quy, H. Song, Y. Kang, Y. Cho, and D. Kim, "Tin Oxide Nanotube Structures Synthesized on a Template of Single-Walled Carbon Nanotubes," J. Cryst. Growth., 311 [3] 657-61 (2009).   DOI
6 D. Eder and R. Kramer, "Electric Impedance Spectroscopy of Titania: Influence of Gas Treatment and of Surface Area," J. Phys. Chem. B, 108 [39] 14823-29 (2004).   DOI
7 B.-M. Lee, D.-Y. Shin, and S.-M. Han, "Synthesis of Hydrous $TiO_2$ Powder by Dropping Precipitant Method and Photocatalytic Properties," J. Korean Ceram. Soc., 37 [4] 308-13 (2000).
8 Y. Ou, J. Lin, S. Fang, and D. Liao, "MWNT-$TiO_2$: Ni Composite Catalyst: A New Class of Catalyst for Photocatalytic $H_2$ Evolution from Water under Visible Light Illumination," Chem. Phys. Lett., 429 [1-3] 199-203 (2006).   DOI
9 A. R. Gandhe, J. B. Fernandes, S. Varma, and N. M. Gupta, "$TiO_2$: As a Versatile Catalyst for the Ortho-Selective Methylation of Phenol," J. Mol. Catal. A: Chem., 238 [1-2] 63-71 (2005).   DOI
10 W. Wang, P. Serp, P. Kalck, C. G. Silva, and J. L. Faria, "Preparation and Characterization of Nanostructured MWCNT-$TiO_2$ Composite Materials for Photocatalytic Water Treatment Applications," Mater. Res. Bull., 43 [4] 958-67 (2008).   DOI
11 D. He, L. Yang, S. Kuang, and Q. Cai, "Fabrication and Catalytic Properties of Pt and Ru Decorated $TiO_2$/CNTs Catalyst for Methanol Electrooxidation," Electrochem. Commun., 9 [10] 2467-72 (2007).   DOI
12 A. Kongkanand, R. M. Dominguez, and P. V. Kamat, "Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons," Nano Lett., 7 [3] 676-80 (2007).   DOI
13 A. L. M. Reddy and S. Ramaprabhu, "Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes," J. Phys. Chem. C, 111 [21] 7727-34 (2007).   DOI
14 O. Frank, M. Kalbac, L. Kavan, M. Zukalova, J. Prochazka, M. Klementova, and L. Dunsch, "Structural Properties and Electrochemical Behavior of CNT-$TiO_2$ Nanocrystal Heterostructures," Phys. Status Solidi B, 244 [11] 4040-45 (2007).   DOI
15 H. Song, X. Qiu, and F. Li, "Effect of Heat Treatment on the Performance of $TiO_2$-Pt/CNT Catalysts for Methanol Electro-Oxidation," Electrochim. Acta., 53 [10] 3708-13 (2008).   DOI
16 I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, and N. Nakashima, "A Mesoporous Nanocomposite of $TiO_2$ and Carbon Nanotubes as a High-Rate Li-Intercalation Electrode Material," Adv. Mater., 18 [1] 69-73 (2006).   DOI
17 N. Bouazza, M. Ouzzine, M. A. Lillo-Ródenas, D. Eder, and A. Linares-Solano, "$TiO_2$ Nanotubes and CNT-$TiO_2$ Hybrid Materials for the Photocatalytic Oxidation of Propene at Low Concentration," Appl. Catal., B, 92 [3-4] 377-83 (2009).   DOI
18 H. An, H. Cui, D. Zhou, D. Tao, B. Li, J. Zhai, and Q. Li, "Synthesis and Performance $Pd/SnO_2-TiO_2$/MWCNT Catalysts for Direct Formic Acid Fuel Cell Application," Electrochim. Acta., 92 [1] 176-82 (2013).   DOI
19 H. Y. Lee, Y. H. Park, and K. H. Ko, "Photocatalytic Characteristics of $TiO_2$ Films by LPMOCVD," J. Korean Ceram. Soc., 36 [12] 1303-9 (1999).
20 H. Song, X. Qui, F. Li, W. Zhu, and L. Chen, "Ethanol Electro-Oxidation on Catalysts with $TiO_2$ Coated Carbon Nanotubes as Support," Electrochem. Commun., 9 [6] 1416-21 (2007).   DOI
21 D. J. Guo, X.-P. Qiu, L.-Q. Chen, and W.-T. Zhu, "Multi-Walled Carbon Nanotubes Modified by Sulfated $TiO_2$-A Promising Support for Pt Catalyst in a Direct Ethanol Fuel Cell," Carbon, 47 [7] 1680-85 (2009).   DOI
22 K. Woan, G. Pyrgiotakis, and W. Sigmund, "Photocatalytic Carbon-Nanotube-$TiO_2$ Composites," Adv. Mater., 21 [21] 2233-39 (2006).   DOI
23 O. Frank, M. Kalbac, L. Kavan, M. Zukalova, J. Prochazka, M. Klementova, and L. Dunsh, "Structural Properties and Electrochemical Behavior of CNT-$TiO_2$ Nanocrystal Heterostructures," Phys. Status Solidi C, 244 [11] 4040-45 (2007).   DOI
24 D. Eder and A. H. Windle, "A Printed and Flexible Field-Effect Transistor Device with Nanoscale Zinc Oxide as Active Semiconductor Material," Adv. Mater., 20 [18] 1787-93 (2008).   DOI
25 Z. Liu, R. Wang, F. Kan, and F. Jiang, "Synthesis and Characterization of $TiO_2$ Nanoparticles," Asian. J. Chem., 26 [3] 655-59 (2014).   DOI
26 D. Eder and A. H. Windle, "Morphology Control of CNT-$TiO_2$ Hybrid Materials and Rutile Nanotubes," J. Mater. Chem., 18 [17] 2036-43 (2008).   DOI
27 K.-Y. Chun, S. I. Jung, H. Y. Choi, J.-U. Kim, and C. J. Lee, "Thin Multi-Walled Carbon Nanotubes Synthesized by Rapid Thermal Chemical Vapor Deposition and Their Field Emission Properties," Nanosci. Nanotechnol., 9 [3] 2148-54 (2009).   DOI