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A HOLLING TYPE II FOOD CHAIN SYSTEM WITH
BIOLOGICAL AND CHEMICAL CONTROLS

Hunki Baek

Abstract. For a class of Holling type II food chain systems with bio-
logical and chemical controls, we give conditions of the local stability of
prey-free periodic solutions and of the permanence of the system. Further,
we show the system is uniformly bounded.

1. Introduction

There are number of factors in the environment to be considered in popu-
lation models. One of important factors is impulsive perturbation such as fire,
flood, etc, that are not suitable to be considered continually. These impulsive
perturbations bring sudden change to the system. For example, consider the
human artificial activities to control the density of the prey and regard the prey
as a pest. There are many ways to beat pests such as biological or chemical
tactics. Biological control is to reduce the pest population using the actions
of other living organisms, often called natural enemies or beneficial species.
Another important method for pest control is chemical control. Pesticides are
useful because they quickly kill a significant portion of a pest population and
they sometimes provide the only feasible method for preventing economic loss.
Such different pest control tactics should work together rather than against
each other to accomplish successful pest population control [11].

S. Zhang and D. Tan [13] investigated complex dynamics of Holling type II
three species food chain system with impulsive perturbations on the predator.
Especially, they took an impulsive perturbation as a biological control. Now,
we consider the following Holling type II food chain system with biological
control on the predator and chemical controls on all species:
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(1.1)



x′(t) = x(t)(a− bx(t))− c1x(t)y(t)
e1 + x(t)

,

y′(t) = −d1y(t) +
c2x(t)y(t)
e1 + x(t)

− c3y(t)z(t)
e2 + y(t)

,

z′(t) = −d2z(t) +
c4y(t)z(t)
e2 + y(t)

,





t 6= nT, t 6= (n+ τ − 1)T

x(t+) = (1− p1)x(t),

y(t+) = (1− p2)y(t),

z(t+) = (1− p3)z(t),

}
t = (n+ τ − 1)T,

x(t+) = x(t),

y(t+) = y(t) + q,

z(t+) = z(t),

}
t = nT,

(x(0+), y(0+), z(0+)) = (x0, y0, z0),

where T is the period of the impulsive immigration or stock of the predator,
0 ≤ p1, p2, p3 < 1 present the fraction of the prey, predator and top predator
which die due to the harvesting or pesticides etc and q is the size of immigration
or stock of the predator. Recently, it is of great interest to study dynamical
properties for impulsive perturbations in population dynamics [8, 7, 6, 12, 13,
14].

In the next section, we introduce some notations used in this paper. In Sec-
tion 3, we show the boundedness of the system and show the local stability of
prey(pest)-free periodic solutions. Furthermore, we establish sufficient condi-
tions for the permanence of the system (1.1) by using the Floquet theory and
small perturbation skills.

2. Preliminaries

First, we shall introduce a few notations and definitions together with a few
auxiliary results relating to comparison theorem, which will be useful for our
main results.

Let R+ = [0,∞) and R3
+ = {x = (x(t), y(t), z(t)) ∈ R3 : x(t), y(t), z(t) ≥

0}. Denote N the set of all of nonnegative integers, R∗+ = (0,∞) and f =
(f1, f2, f3)T the right hand of the first three equations in (1.1). Let V : R+ ×
R3

+ → R+. Then V is said to be in a class V0 if

(1) V is continuous on (nT, (n+1)T ]×R3
+, and lim(t,y)→(nT,x)t>nT V (t,y)

= V (nT+,x) exists.
(2) V is a local Lipschitzian in x.

Definition 2.1. For V ∈ V0, we define the upper right Dini derivative of V with
respect to the impulsive differential system (1.1) at (t,x) ∈ (nT, (n+1)T ]×R3

+
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by

D+V (t,x) = lim sup
h→0+

1
h

[V (t+ h,x + hf(t,x))− V (t,x)].

Remark 2.2. (1) The solution of the system (1.1) is a piecewise continuous
function x : R+ → R3

+, x(t) is continuous on (nT, (n + 1)T ], n ∈ N and
x(nT+) = limt→nT+ x(t) exists. (2) The smoothness properties of f guarantee
the global existence and uniqueness of solutions of the system (1.1). (See [5]
for the details).

We will use a comparison result of impulsive differential inequalities. We
suppose that g : R+ × R+ → R satisfies the following hypotheses:

(H) g is continuous on (nT, (n+ 1)T ]× R+ and the limit

lim
(t,y)→(nT+,x)

g(t, y) = g(nT+, x)

exists and is finite for x ∈ R+ and n ∈ N.

Lemma 2.3 ([5]). Suppose V ∈ V0 and

(2.1)





D+V (t,x) ≤ g(t, V (t,x)), t 6= (n+ τ − 1)T, nT,
V (t,x(t+)) ≤ ψ1

n(V (t,x)), t = (n+ τ − 1)T,
V (t,x(t+)) ≤ ψ2

n(V (t,x)), t = nT,

where g : R+ × R+ → R satisfies (H) and ψ1
n, ψ

2
+ : R+ → R+ are non-

decreasing for all n ∈ N. Let r(t) be the maximal solution for the impulsive
Cauchy problem

(2.2)





u′(t) = g(t, u(t)), t 6= (n+ τ − 1)T, nT,
u(t+) = ψ1

n(u(t)), t = (n+ τ − 1)T,
u(t+) = ψ2

n(u(t)), t = nT,

u(0+) = u0,

defined on [0,∞). Then V (0+,x0) ≤ u0 implies that V (t,x(t)) ≤ r(t), t ≥ 0,
where x(t) is any solution of (2.1).

We now indicate a special case of Lemma 2.3 which provides estimations for
the solution of a system of differential inequalities. For this, we let PC(R+,R)
(PC1(R+,R)) denote the class of real piecewise continuous (real piecewise con-
tinuously differentiable) functions defined on R+.

Lemma 2.4 ([5]). Let the function u(t) ∈ PC1(R+,R) satisfy the inequalities

(2.3)





du

dt
≤ f(t)u(t) + h(t), t 6= τk, t > 0,

u(τ+
k ) ≤ αku(τk) + βk, k ≥ 0,

u(0+) ≤ u0,
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where f, h ∈ PC(R+,R) and αk ≥ 0, βk and u0 are constants and (τk)k≥0 is a
strictly increasing sequence of positive real numbers. Then, for t > 0,

u(t) ≤ u0

( ∏
0<τk<t

αk

)
exp

(∫ t

0

f(s)ds
)

+
∫ t

0

( ∏

0≤τk<t

dk

)
exp

(∫ t

s

f(γ)dγ
)
h(s)ds

+
∑

0<τk<t

( ∏
τk<τj<t

dj

)
exp

(∫ t

τk

f(γ)dγ
)
βk.

Similar result can be obtained when all conditions of the inequalities in the
Lemmas 2.3 and 2.4 are reversed. Using Lemma 2.4, it is possible to prove
that the solutions of the Cauchy problem (2.2) with strictly positive initial
value remain strictly positive.

Lemma 2.5. The positive octant (R∗+)3 is an invariant region for the sys-
tem (1.1).

Proof. Let (x(t), y(t), z(t)) : [0, t0) → R2 be a saturated solution of the sys-
tem (1.1) with a strictly positive initial value (x(0), y(0), z(0)). By Lemma 2.4,
we can obtain that, for 0 ≤ t < t0,

(2.4)





x(t) ≤ x(0)(1− p1)[
t
T ] exp

(∫ t

0

f1(s)ds
)
,

y(t) ≤ y(0)(1− p2)[
t
T ] exp

(∫ t

0

f2(s)ds
)
,

z(t) ≤ z(0)(1− p3)[
t
T ] exp

(∫ t

0

f3(s)ds
)
,

where f1(s) = a−bx(s), f2(s) = −d1 + c2x(s)
e1+x(s) and f3(s) = −d2 + c4y(s)

e2
. Thus,

x(t), y(t), z(t) remain strictly positive on [0, t0). ¤

Now, we give the basic properties of another impulsive differential equation
as follows:

(2.5)





y′(t) = −d1y(t), t 6= nT, t 6= (n+ τ − 1)T,
y(t+) = (1− p2)y(t), t = (n+ τ − 1)T,
y(t+) = y(t) + q, t = nT.

The system (2.5) is a periodically forced linear system. It is easy to obtain that

(2.6) y∗(t) =





q exp(−d1(t− (n− 1)T ))
1− (1− p2) exp(−d1T )

, (n− 1)T < t ≤ (n+ τ − 1)T,

q(1− p2) exp(−d1(t− (n− 1)T ))
1− (1− p2) exp(−d1T )

, (n+ τ − 1)T < t ≤ nT,



A HOLLING TYPE II FOOD CHAIN SYSTEM 219

y∗(0+) = y∗(nT+) = q
1−(1−p2) exp(−d1T ) , y

∗((n+τ−1)T+) = q(1−p2) exp(−d1τT )
1−(1−p2) exp(−d1T )

is a positive periodic solution of (2.5). Moreover, we can obtain that
(2.7)

y(t) =





(1− p2)n−1

(
y(0+)− q(1− p2)e−T

1− (1− p2) exp(−d1T )

)
exp(−d1t) + y∗(t),

(n− 1)T < t ≤ (n+ τ − 1)T,

(1− p2)n

(
y(0+)− q(1− p2)e−T

1− (1− p2) exp(−d1T )

)
exp(−d1t) + y∗(t),

(n+ τ − 1)T < t ≤ nT,

is a solution of (2.5). From (2.6) and (2.7), we get easily the following result.

Lemma 2.6. All solutions y(t) of (2.5) tend to y∗(t), i.e., |y(t) − y∗(t)| → 0
as t→∞.

It follows from Lemma 2.6 that the general solution y(t) of (2.5) can be syn-
chronized with the positive periodic solution y∗(t) of (2.5) and we can obtain
the complete expression for the prey and top predator free periodic solution of
the system (1.1)

(0, y∗(t), 0).

3. Main results

First, we show that all solutions of (1.1) are uniformly bounded.

Theorem 3.1. There is an M > 0 such that x(t) ≤M,y(t) ≤M and z(t) ≤M
for all t large enough, where (x(t), y(t), z(t)) is a solution of the system (1.1).

Proof. Let (x(t), y(t), z(t)) be a solution of (1.1) and let u(t) = c2
c1
x(t) + y(t) +

c3
c4
z(t) for t ≥ 0. Then, if t 6= nT , t 6= (n + τ − 1)T and t > 0, then we

obtain that du(t)
dt = − c2b

c1
x2(t) + c2a

c1
x(t) − d1y(t) − c3d2

c4
z(t) and hence du(t)

dt +
β0u(t) = − c2b

c1
x2(t) + c2a

c1
x(t) + (β − d1)y(t) + c3

c4
(β − d2)z(t). From choosing

0 < β0 < min{d1, d2}, we have

(3.1)

du(t)
dt

+ β0u(t)

≤ − c2b

c1
x2(t) +

c2
c1

(a+ β0)x(t), t 6= nT, t 6= (n+ τ − 1)T, t > 0.

As the right-hand side of (3.1) is bounded from above by M0 = c2(a+β0)
2

4b2c1
, it

follows that

du(t)
dt

+ β0u(t) ≤M0, t 6= nT, n 6= (n+ τ − 1)T, t > 0.
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If t = nT , then u(t+) = u(t)+q and if t = (n+τ−1)T , then u(t+) ≤ (1−p)u(t),
where p = min{p1, p2, p3}. From Lemma 2.4, we get that

(3.2)

u(t) ≤ u0

( ∏

0<kT<t

(1− p)

)
exp

(∫ t

0

−β0ds
)

+
∫ t

0

( ∏

0≤kT<t

(1− p)

)
exp

(∫ t

s

−β0dγ
)
M0ds

+
∑

0<kT<t

( ∏

kT<jT<t

(1− p)

)
exp

(∫ t

kT

−β0dγ
)
q

≤ u(0+) exp(−β0t) +
M0

β0
(1− exp(−β0t)) +

q exp(β0T )
exp(β0T )− 1

.

Since the limit of the right-hand side of (3.2) as t→∞ is

M0

β0
+

q exp(β0T )
exp(β0T )− 1

<∞,

it easily follows that u(t) is bounded for sufficiently large t. Therefore, x(t), y(t)
and z(t) are bounded by a constant M for sufficiently large t. ¤

Theorem 3.2. The periodic solution (0, y∗(t), 0) is locally asymptotically stable
if

(3.3) aT + ln(1− p1) <
c1q(Γ− e2p2 exp(−d1τT ))

e1d1Γ
and
(3.4)

(Γ + q exp(−d1τT ))(Γ + q(1− p2) exp(−d1T ))
(Γ + q)(Γ + q(1− p2) exp(−d1τT ))

> (1− p3)
d1
c4 exp

(
−d1d2T

c4

)
,

where Γ = e2(1− (1− p2) exp(−d1T )).

Proof. The local stability of the periodic solution (0, y∗(t), 0) of the system (1.1)
may be determined by considering the behavior of small amplitude perturba-
tions of the solution. Let (x(t), y(t), z(t)) be any solution of the system (1.1).
Define u(t) = x(t), v(t) = y(t)− y∗(t), w(t) = z(t). Then they may be written
as 


u(t)
v(t)
w(t)


 = Φ(t)



u(0)
v(0)
w(0)


 ,

where Φ(t) satisfies

dΦ
dt

=



a− c1

e1
y∗(t) 0 0

c2
e1
y∗(t) −d1 − c3y∗(t)

e2+y∗(t)

0 0 −d2 + c4y∗(t)
e2+y∗(t)


Φ(t)
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and Φ(0) = I, the identity matrix. So the fundamental solution matrix is

Φ(t) =




exp(
∫ t

0
a− c1

e1
y∗(s)ds) 0 0

exp(
∫ t

0
c2
e1
y∗(s)ds) exp(−d1t) exp(− ∫ t

0
c3y∗(s)

e2+y∗(s)ds)

0 0 exp(
∫ t

0
−d2 + c4y∗(s)

e2+y∗(s)ds)


 .

The resetting impulsive conditions of the system (1.1) become


u((n+ τ − 1)T+)
v((n+ τ − 1)T+)
u((n+ τ − 1)T+)


 =




1− p1 0 0
0 1− p2 0
0 0 1− p3






u((n+ τ − 1)T )
v((n+ τ − 1)T )
w((n+ τ − 1)T )




and 

u(nT+)
v(nT+)
w(nT+)


 =




1 0 0
0 1 0
0 0 1






u(nT )
v(nT )
w(nT )


 .

Note that all eigenvalues of

S =




1− p1 0 0
0 1− p2 0
0 0 1− p3







1 0 0
0 1 0
0 0 1


 Φ(T )

are µ1 = (1−p1) exp(
∫ T

0
a− c1

e1
y∗(t)dt), µ2 = (1−p2) exp(−d1T ) < 0 and µ3 =

(1−p3) exp(
∫ T

0
−d2 + c4y∗(t)

e2+y∗(t)dt). Since y∗(t) = q exp(−d1t)
1−(1−p2) exp(−d1T ) , 0 < t ≤ τT,

and y∗(t) = q(1−p2) exp(−d1t)
1−(1−p2) exp(−d1T ) , τT < t ≤ T , we have

(3.5)
∫ T

0

y∗(t)dt =
q(Γ− e2p2 exp(−d1τT ))

d1Γ

and
(3.6)∫ T

0

y∗(t)
e2 + y∗(t)

dt =
∫ τT

0

y∗(t)
e2 + y∗(t)

dt+
∫ T

τT

y∗(t)
e2 + y∗(t)

dt

= − 1
d1

ln
(

(Γ + q exp(−d1τT ))(Γ + q(1− p2) exp(−d1T ))
(Γ + q)(Γ + q(1− p2) exp(−d1τT ))

)
,

where Γ = e2(1− (1− p2) exp(−d1T )). It follows from (3.5) and (3.6) that the
conditions |µ1| < 1 and |µ3| < 1 are equivalent to the equations (3.3) and (3.4),
respectively. Therefore, from the Floquet theory [1], we obtain (0, y∗(t), 0) is
locally stable. ¤

Definition 3.3. The system (1.1) is permanent if there exist M ≥ m > 0 such
that, for any solution (x(t), y(t), z(t)) of the system (1.1) with x0, y0, z0 > 0,

m ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

supx(t) ≤M,

m ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤M,
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and

m ≤ lim
t→∞

inf z(t) ≤ lim
t→∞

sup z(t) ≤M.

To prove the permanence of the system (1.1), we consider the following two
subsystems. If the top-predator is absent, i.e., z(t) = 0, then the system (1.1)
can be expressed as

(3.7)





x′(t) = x(t)(a− bx(t))− c1x(t)y(t)
e1 + x(t)

,

y′(t) = −d1y(t) +
c2x(t)y(t)
e1 + x(t)

,

}
t 6= nT, t 6= (n+ τ − 1)T,

x(t+) = (1− p1)x(t),

y(t+) = (1− p2)y(t),

}
t 6= (n+ τ − 1)T,

x(t+) = x(t),

y(t+) = y(t) + p,

}
t = nT,

(x(0+), y(0+)) = (x0, y0).

If the prey is extinct, then the system (1.1) can be expressed as

(3.8)





y′(t) = −d1y(t)− c3y(t)z(t)
e2 + y(t)

,

z′(t) = −d2z(t) +
c4y(t)z(t)
e2 + y(t)

,

}
t 6= nT, t 6= (n+ τ − 1)T,

y(t+) = (1− p2)y(t),

z(t+) = (1− p3)z(t),

}
t 6= (n+ τ − 1)T,

y(t+) = y(t) + p,

z(t+) = z(t),

}
t = nT,

(y(0+), z(0+)) = (y0, z0).

Especially, B. Liu et al. [7] gave a condition for permanence of the subsystem
(3.7).

Theorem 3.4 ([7]). The subsystem (3.7) is permanent if

aT + ln(1− p1) >
c1q(Γ− e2p2 exp(−d1τT ))

e1d1Γ
,

where Γ = e2(1− (1− p2) exp(−d1T )).

Theorem 3.5. The subsystem (3.8) is permanent if

(Γ + q exp(−d1τT ))(Γ + q(1− p2) exp(−d1T ))
(Γ + q)(Γ + q(1− p2) exp(−d1τT ))

< (1− p3)
d1
c4 exp

(
−d1d2T

c4

)
,

where Γ = e2(1− (1− p2) exp(−d1T )).
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Proof. Let (y(t), z(t)) be a solution of the subsystem (3.8) with y0 > 0 and
z0 > 0. From Theorem 3.1, we may assume that y(t) ≤ M and z(t) ≤ e2

c3
M .

Then y′(t) ≥ −(d1+M)y(t). From Lemmas 2.3 and 2.6, we have y(t) ≥ u∗(t)−ε
for ε > 0, where

u∗(t) =





q exp(−(d1 +M)(t− (n− 1)T ))
1− (1− p2) exp(−(d1 +M)T )

, (n− 1)T < t ≤ (n+ τ − 1)T,

q(1− p2) exp(−(d1 +M)(t− (n− 1)T ))
1− (1− p2) exp(−(d1 +M)T )

, (n+ τ − 1)T < t ≤ nT.

Thus, we obtain that y(t) ≥ q(exp(−(d1+M)T )
1−(1−p2) exp(−(d1+M)T ) − ε ≡ m0 for sufficiently

large t. Therefore, we only need to find an m2 > 0 such that z(t) ≥ m2 for
large enough t. We will do this in the following two steps.

(Step1) From the assumption of this theorem, we can choose m1 > 0, ε1 > 0
small enough such that

Φ ≡ (1− p3) exp
(
−d2T − c4

e2
ε1T − c4

d1
ln

(∆1

∆2

))
> 1,

where ∆1 = (γ + q exp(−(d1 + c3
e2
m1)τT ))(γ + q(1− p2) exp(−(d1 + c3

e2
m1)T )),

∆2 = γ + q)(γ + q(1 − p2) exp(−(d1 + c3
e2
m1)τT ) and γ = (e2 + ε1)(1 − (1 −

p2) exp(−(d1 + c3
e2
m1)T )). In this step, we will show that z(t1) ≥ m1 for some

t1 > 0. Suppose not, i.e., z(t) < m1 for t > 0. Consider the following system.

(3.9)





v′(t) = −(d1 +
c3
e2
m1)v(t),

w′(t) = −
(
d2 − c4v(t)

e2 + v(t)

)
w(t),

}
t 6= (n+ τ − 1)T, t 6= nT,

v(t+) = (1− p2)v(t),

w(t+) = (1− p3)w(t),

}
t = (n+ τ − 1)T,

v(t+) = v(t) + p,

w(t+) = w(t),

}
t = nT,

(v(0+), w(0+)) = (y0, z0).

Then, by Lemmas 2.3, we obtain y(t) ≥ v(t) and z(t) ≥ w(t). By Lemma 2.6,
we have v∗(t) + ε1 ≥ v(t) ≥ v∗(t)− ε1, where, for t ∈ ((n− 1)T, nT ],

v∗(t) =





q exp(−(d1 + c3
e2
m1)(t− (n− 1)T ))

1− (1− p2) exp(−(d1 + c3
e2
m1)T )

, (n− 1)T < t ≤ (n+ τ − 1)T,

q(1− p2) exp(−(d1 + c3
e2
m1)(t− (n− 1)T ))

1− (1− p2) exp(−(d1 + c3
e2
m1)T )

, (n+ τ − 1)T < t ≤ nT



224 HUNKI BAEK

is the periodic solution of the impulsive equation (2.5) with d1 changed d1 +
c3
e2
m1. Thus

(3.10)
w′(t) ≥

(
−d2 +

c4v
∗(t)− c4ε1

e2 + v∗(t) + ε1

)
w(t)

≥
(
−d2 +

c4v
∗(t)

e2 + ε1 + v∗(t)
− c4
e2
ε1

)
w(t).

Integrating (3.10) on ((n+ τ − 1)T, (n+ τ)T ], we get

w((n+ τ)T )

≥ w((n+ τ − 1)T+) exp
(∫ (n+τ)T

(n+τ−1)T

−d2 − c4
e2
ε1 +

c4v
∗(t)

e2 + ε1 + v∗(t)
dt

)
.

Since
∫ (n+τ)T

(n+τ−1)T

v∗(t)
e2 + ε1 + v∗(t)

dt

= − 1
d1 + c3

e2
m1

∫ T

(τ−1)T

η(1− p2)
e2 + ε1 + η(1− p2)x

dx− 1
d1 + c3

e2
m1

∫ τT

0

η

e2 + ε1 + ηx
dx,

we get w((n+ τ)T ) ≥ w((n+ τ − 1)T )Φ. Therefore z((n+ τ + k)T ) ≥ w((n+
τ + k)T ) ≥ w((n+ τ)T )Φk →∞ as k →∞ which contradicts the boundedness
of z(t).

(Step 2) Without loss of generality, we may let z(t1) = m1. If z(t) ≥ m1

for all t > t1, then the subsystem (3.8) is permanent. If not, we may let
t2 = inft>t1{z(t) < m1}. Then z(t) ≥ m1 for t1 ≤ t ≤ t2 and, by continuity
of z(t), we have z(t2) = m1 and t1 < t2. There exist a t′ (> t2) such that
z(t′) ≥ m1 by Step 1. Set t3 = inft>t2{z(t) ≥ m1}. Then z(t) < m1 for
t2 < t < t3 and z(t3) = m1. We can continue this process by using Step 1.
If the process is stopped in finite times, we complete the proof. Otherwise,
there exists an interval’s sequence [t2k, t2k+1], k ∈ N, which has the following
property : z(t) < m1, t ∈ (t2k, t2k+1), t2k−1 < t2k ≤ t2k+1 and z(tn) = m1,
where k, n ∈ N. Let T0 = sup{t2k+1 − t2k | k ∈ N}. If T0 = ∞, then we can
take a subsequence {t2ki} satisfying t2ki+1 − t2ki → ∞ as ki → ∞. As in the
proof of the first step, this will lead to a contradiction to the boundedness of
z(t). Then we obtain T0 <∞. Note that

z(t) ≥ z(t2k) exp
(∫ t

t2k

−d2 − c4
e2
ε1 +

c4v
∗(s)

e2 + ε1 + v∗(s)
ds

)

≥ m1 exp(−d2T0) ≡ m2, t ∈ (t2k, t2k+1], k ∈ N.
Thus we obtain that lim inft→∞ z(t) ≥ m2. Therefore we complete the proof.

¤
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Theorem 3.6. The system (1.1) is permanent if

(3.11) aT + ln(1− p1) >
c1q(Γ− e2p2 exp(−d1τT ))

e1d1Γ

and
(3.12)

(Γ + q exp(−d1τT ))(Γ + q(1− p2) exp(−d1T ))
(Γ + q)(Γ + q(1− p2) exp(−d1τT ))

< (1− p3)
d1
c4 exp

(
−d1d2T

c4

)
,

where Γ = e2(1− (1− p2) exp(−d1T )).

Proof. Let Γ = e2(1− (1− p2) exp(−d1T )). Consider the following two subsys-
tem of the system (1.1).
(3.13)




x′1(t) = x1(t)
(
a− bx1(t)− c1y1(t)

e1 + x1(t)

)
,

y′1(t) = y1(t)
(
−d1 +

c2x1(t)
e1 + x1(t)

)
,

}
t 6= nT, t 6= (n+ τ − 1)T,

x1(t+) = (1− p1)x1(t),

y1(t+) = (1− p2)y1(t),

}
t = (n+ τ − 1)T,

x1(t+) = x1(t),

y1(t+) = y1(t) + p,

}
t = nT,

(x1(0+), y1(0+)) = (x0, y0)

and

(3.14)





y′2(t) = y2(t)
(
−d1 − c3z(t)

e2 + y(t)

)
,

z′2(t) = z2(t)
(
−d2 +

c4y(t)
e2 + y(t)

)
,

}
t 6= nT, t 6= (n+ τ − 1)T,

y2(t+) = (1− p2)y2(t),

z2(t+) = (1− p3)z2(t),

}
t = (n+ τ − 1)T,

y2(t+) = y2(t) + p,

z2(t+) = z2(t),

}
t = nT,

(y2(0+), z2(0+)) = (y0, z0).

It follows from Lemma 2.3 that x1(t) ≤ x(t) , y1(t) ≥ y(t), y2(t) ≤ y(t) and
z2(t) ≤ z(t). If aT + ln(1 − p1) >

c1q(Γ−e2p2 exp(−d1τT ))
e1d1Γ

, by Theorem 3.4 the
subsystem (3.13) is permanent. Thus we can take T1 > 0 and m1 > 0 such
that x(t) ≥ m1 for t ≥ T1. Further, if (Γ+q exp(−d1τT ))(Γ+q(1−p2) exp(−d1T ))

(Γ+q)(Γ+q(1−p2) exp(−d1τT )) <

(1−p3)
d1
c4 exp(−d1d2T

c4
), by Theorem 3.5 the subsystem (3.14) is also permanent.

Therefore, there exists T2 > 0 and m2,m3 > 0 such that y(t) ≥ m2 and
z(t) ≥ m3 for t ≥ T2. The proof is complete. ¤
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Remark 3.7. It follow from Theorems 3.1, 3.2 and 3.6 that Theorems 3.1, 3.2
and 3.4 in [13] are Corollaries.
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