• Title/Summary/Keyword: biological activated carbon

Search Result 221, Processing Time 0.027 seconds

Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants

  • Choi, Yonkyu;Cha, Yeongseop;Kim, Bogsoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.91-104
    • /
    • 2019
  • The taxonomic and functional characteristics of bacterial communities in the pre-chlorinated rapid filters and ozonated biological activated carbon (BAC) filters were compared using Illumina MiSeq sequencing of the 16S rRNA gene and community-level physiological profiling (CLPP) based on sole-carbon-source utilization patterns. Both the rapid filters and BAC filters were dominated by Rhizobiales within ${\alpha}-proteobacteria$, but other abundant orders and genera were significantly different in both types of filter. Firmicutes were abundant only in the intermediate chlorinated rapid filter, while Acidobacteria were abundant only in the BAC filters. Bacterial communities in the rapid filter showed high utilization of carbohydrates, while those in the BAC filters showed high utilization of polymers and carboxylic acids. These different characteristics of the bacterial communities could be related to the different substrates in the influents, filling materials, and residual disinfectants. Chlorination and ozonation inactivated the existing bacteria in the influent and formed different bacterial communities, which could be resistant to the oxidants and effectively utilize different substrates produced by the oxidant, including Phreatobacter in the rapid filters and Hyphomicrobium in the BAC filters. Bradyrhizobium and Leptothrix, which could utilize compounds adsorbed on the GAC, were abundant in the BAC filters. Ozonation increased taxonomic diversity but decreased functional diversity of the bacterial communities in the BAC filters. This study provides some new insights into the effects of oxidation processes and filling materials on the bacterial community structure in the biological filters of drinking water treatment plants.

Adsorption of Cesium from an Aqueous Solution Using Activated Carbon Impregnated with triethylenediamine (TEDA) (Triethylenediamine (TEDA)로 첨착된 활성탄소를 이용한 수용액에서 세슘의 흡착)

  • Jong-Soo Choi;Suk Soon Choi;Choong Jeon;Tae-Young Jeong;Jeong Hyub Ha;Jae-Hoon Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • Cesium discharged from nuclear power plants requires technology for safely treating, due to its harmfulness to the human body. In this work, activated carbon impregnated with triethylenediamine (TEDA) process was applied to effectively remove cesium dissolved in aqueous solution. The surfaces on the activated carbon were chemically modified with various TEDA concentrations (2.5, 5.0, 7.5, 10.0, and 12.5%) and the optimal TEDA concentration was obtained to be 5.0% by the assessment for cesium removal efficiency. In addition, when 5.0% TEDA-impregnated activated carbon was used to treat 5.0 and 10.0 mg/L of cesium, the removal efficiency was 71.5% and 61.1%, respectively. Also, it was found to be the chemical adsorption from the adsorption kinetics experiment by temperature change. A novel remediation technology developed in this study could be practically employed for removing cesium contained in surface and ground water.

Evaluation of COD Solubilization and Reduction of Waste Activated Sludge by pH Control (pH 조절을 통한 폐활성 슬러지의 COD 가용화 및 감량화 평가)

  • Kim, Youn Kwon;Moon, Yong Taik;Kim, Ji Yeon;Seo, In Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.551-558
    • /
    • 2007
  • From the view point of biological wastewater treatment, C/N ratio is one of the most important factor in biological nutrient removal process. However, municipal sewage in Korea is characterized by extremely low content of carbon source and relatively higher portion of N source. Accordingly, it is necessary to dose external carbon source in order to obtain higher degree of carbon source within the process. In this study, the effects of pH pretreatment as an alternative plan for increasing carbon source on the cell disruption and COD solubility of waste activated sludge were conducted under well defined experimental conditions. During 5 hours, the value of COD solubilization rate ($S_R$) at pH 11.5 is approximately 4.4 times higher than the value of $S_R$ at pH 9.5. It is expected that the level of SCOD increased due to the result from cell disruption. However, VSS/TSS ratio was not significantly changed after 5 hours. As Alkalinity changes gradually from less than 15, 30 and 60 meq NaOH/L, average RBCOD/SCOD fraction showed 34, 36 and 45%,respectively.

Additional Effect of Zeolite Based on Bactericidal Activated Carbon Spheres with Enhanced Adsorption Effect and Higher Ignition Temperature

  • Zhu, Lei;Ye, Shu;Asghar, Ali;Bang, Seong-Ho;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, the fabrication of zeolite combined activated carbon spherical samples was carried out as follows. Briefly, ZSM-5 zeolite and activated carbon were composed as main absorbent materials; by controlling the weight percentage of zeolite and binder materials, a series of spherical samples (AZP 4, 6, 8) were prepared. These spherical samples were characterized by BET, XRD, SEM, EDX, and pressure drop; benzene and iodine adsorption tests, bactericidal effect test, and ignition temperature test were also performed. The adsorption capability was found to depend on the BET surface area; the spherical samples AZP6 with high BET surface area of $1011m^2/g$ not only exhibited excellent removal effects for benzene (24.9%) and iodine (920mg/g) but also a good bactericidal effect. The enhanced ignition temperature may be attributed to the homogeneous dispersion conditions and the proper weight percentage ratio between zeolite and activated carbon.

Effect of Boric Acid Treatment on the Electrochemical Properties of the Phenol-Based Activated Carbon (페놀계 활성탄소의 전기화학 특성에 미치는 붕산 처리의 영향)

  • Jung, Min-Jung;Yu, Hye-Ryeon;Lee, Dayoung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • In this study, the surface of a phenol based activated carbon (AC) used as an electrode in an electric double layer capacitor was modified via boric acid treatment for the capacitance investigation. The effect of boric acid treatment on electrochemical performance was also investigated. The AC surface functional groups ratio of quinone-like (O=C) which is electrochemical active functional groups was increased after the boric acid treatment. And, boric acid treated AC showed an increase in the specific surface area, total pore volume, and micropore volume. In case of optimum boric acid treated AC, its specific capacitance increased by 20% in comparison to that of untreated AC. These results demonstrate that a boric acid treated carbon surface-based electric double layer capacitor electrode effectively enhances specific capacitance.

The Effect of Some Amendments to Reduce Ammonia during Pig Manure Composting (몇 가지 처리제의 첨가에 의한 돈분의 퇴비화 과정 중 암모니아 발생 저감 효과)

  • Joo, Jin-Ho;Kim, Dae-Hoon;Yoo, Jae-Hong;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.269-273
    • /
    • 2007
  • Occurrence of malodor could cause adverse impacts on human health and increase public interest. Therefore, scientific methods to decrease odor is required. Endeavor to decrease odor from compost however has not fully been successful. The purpose of this research is assessment of some amendments to reduce $NH_3$ from immature composts. Calcium hydroxide was applied to composts due to it's characteristics to increase pH. Activated carbon and zerovalent iron (ZVI) were selected because of their adsorption properties. The research results were as follows: Calcium hydroxide, activated carbon, zerovalent iron increased the composting temperature above $60^{\circ}C$. The addition of calcium hydroxide, activated carbon, and ZVI to compastry process increased pH 8.6 - 8.8 from $1^{st}$ day to $14^{th}$ day. During the 14 days of composting, addition of calcium hydroxide, activated carbon and ZVI changed EC from $2.15-0.66dS\;m^{-1}$, $1.48-1.11dS\;m^{-1}$, respectively and $1.77-0.68dS\;m^{-1}$. The difference in EC of the compost was due to irregularities of samples. Organic matter in the compost decreased through out theexcept control. The $NH_4-N/NO_3-N$ ratio of all experimental compost increased through the process. The addition of activated carbon, calcium hydroxide and ZVI decreased $NH_3$ from 0.1ppm, 0.7ppm and 1.7ppm more than the control (pig manure and sawdust), 9.3ppm, in 30 days of composting. In conclusion, odor from prematured compost decreased by addition of chemicals like calcium hydroxide, activated carbon, zerovalent iron. Moreover, use of these $NH_3$ reducers alone or together combined at different periods of composting etc. could decrease $NH_3$.

Preparation and Characterization of Electrospun TiO2-Activated Carbon Complex Fiber as Photocatalyst

  • Jung, Min-Jung;Jeong, Eui-Gyung;Jang, Jeen-Seok;Lee, Young-Seak
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2010
  • In this study, $TiO_2$-Activated carbon (AC) complex fibers were prepared by electrospinning for the synergetic effect of adsorption and degradation of organic pollutant. The average diameter of these fibers increased with increasing the amount of AC added, except for 1AC-TOF (AC$/TiO_2$ =1/40 mass ratio). After calcinations at $500^{\circ}C$, long as-spun fibers were broken and their average diameter was slightly decreased. The resultant fibers after calcination had rough surface and sphere shapes like a peanut. From XRD results, it was confirmed that as-spun fibers were changed to anatase $Ti_O2$ fiber after calcinations at $500^{\circ}C$. The prepared $TiO_2$-AC complex fibers could remove procian blue dyes by solar light irradiation with high removal property of 94~99%. The PB dye was rapidly removed by adsorption during the initial 5 minutes. But after 5 minutes, dye removal was occurred by photodegradation. In this study, the most efficient AC/$TiO_2$ ratio of $TiO_2$-AC complex fibers was 5/40, showing the synergetic effect of adsorption and photodegradation. It is expected that the $TiO_2$-AC complex fibers can be used to remove of organic pollutants in water system.

Membrane-Coupled Sequencing Batch Reactor System for the Advanced Treatment of Rural Village Sewage (막결합 연속회분식 반응기를 이용한 농촌마을 하수의 고도처리)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.20-30
    • /
    • 2014
  • A membrane-coupled sequencing batch reactor (MSBR) was used for the advanced treatment of rural village sewage which is very low C/N ratio. The effect of powdered activated carbon, aeration rate, and external organic material loadings on the treatment efficiency and filtration performance were investigated in sequencing batch reactor, in which a flat-sheet type microfiltration membrane with a pore size of $0.4{\mu}m$ was submerged. At the initial operation (within 54 days) MLSS concentration, and the removal efficiencies of COD, T-N, and T-P were increased with the increase of C/N ratio. After 89 days the removal efficiencies of COD, T-N, and T-P were 97.1%, 75.0%, and 48.3%, respectively. Suspended solid-free effluent was obtained by membrane filtration. The T-P removal was relatively low because of depending on the amount of excess sludge wasting. During the operation of MSBR with powdered activated carbon, the particle size of the sludge reduced by the increase of collision frequency and mixing intensity. In comparison with MSBR without powdered activated carbon, TMP of MSBR with that was significantly elevated.