Browse > Article
http://dx.doi.org/10.5714/CL.2017.23.069

Lyocell-based activated carbon fibers improved the adsorption of harmful gas properties when produced via dual-simultaneous treatments  

Bai, Byong Chol (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Carbon letters / v.23, no., 2017 , pp. 69-73 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim JY, Lee JG, Hong IP. NO reduction and oxidation over PAN based-ACF. Carbon Lett, 1, 17 (2000).
2 Sumathi S, Bhatia S, Lee KT, Mohamed AR. Optimization of microporous palm shell activated carbon production for flue gas desulphurization: experimental and statistical studies. Bioresour Technol, 100, 1614 (2009). https://doi.org/10.1016/j. biortech.2008.09.020.   DOI
3 Foley HC. Carbogenic molecular sieves: synthesis, properties and applications. Microporous Mater, 4, 407 (1995). https://doi.org/10.1016/0927-6513(95)00014-z.   DOI
4 Kang SC, Im JS, Lee YS. Improved sensitivity of an NO gas sensor by chemical activation of electrospun carbon fibers. Carbon Lett, 12, 21 (2011). https://doi.org/10.5714/cl.2011.12.1.021.   DOI
5 Tseng HH, Wey MY, Fu CH. Carbon materials as catalyst supports for $SO_2$ oxidation: catalytic activity of CuO-AC. Carbon, 41, 139 (2003). https://doi.org/10.1016/s0008-6223(02)00264-6.   DOI
6 Lua AC, Yang T. Theoretical and experimental $SO_2$ adsorption onto pistachio nut-shell activated carbon for a fixed-bed column. Chem Eng J, 155, 175 (2009). https://doi.org/10.1016/j.cej.2009.07.031.   DOI
7 Lisovskii A, Semiat R, Aharoni C. Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of 10.1016/j.cej.2009.07.031 and extractability of the acid formed. Carbon, 35, 1639 (1997). https://doi.org/10.1016/s0008-6223(97)00129-2.   DOI
8 Bai BC, Kim EA, Jeon YP, Lee CW, In SJ, Lee YS, Im JS. Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound. Mater Lett, 135, 226 (2014). https://doi. org/10.1016/j.matlet.2014.07.131.   DOI
9 Heo YJ, Le MUT, Park SJ. Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM- 48 mesoporous silica. Carbon Lett, 18, 62 (2016). https://doi.org/10.5714/cl.2016.18.062.   DOI
10 Park MS, Lee S, Jung MJ, Kim HG, Lee YS. NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group. Carbon Lett, 20, 19 (2016). https://doi.org/10.5714/cl.2016.20.019.   DOI
11 Tang MM, Bacon R. Carbonization of cellulose fibers I. Low temperature pyrolysis. Carbon, 2, 211 (1964). https://doi.org/10.1016/0008-6223(64)90035-1.   DOI
12 Nam S, Condon BD, Parikh DV, Zhao Q, Cintron MS, Madison C. Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym Degrad Stab, 96, 2010 (2011). https://doi.org/10.1016/j.polymdegradstab. 2011.08.014.   DOI
13 Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornate. Chem Eng J, 106, 177 (2005). https:// doi.org/10.1016/j.cej.2004.12.039.   DOI
14 Aksu Z, Gonen F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem, 39, 599 (2004). https://doi.org/10.1016/s0032-9592(03)00132-8.   DOI
15 Hasana SH, Srivastavaa P, Talatb M. Biosorption of lead using immobilized Aeromonas hydrophila biomass in up flow column system: factorial design for process optimization. J Hazardous Mater, 177, 312 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.034.   DOI
16 Statheropoulos M, Kyriakou SA. Quantitative thermogravimetricmass spectrometric analysis for monitoring the effects of fire retardants on cellulose pyrolysis. Anal Chim Acta, 409, 203 (2000). https://doi.org/10.1016/s0003-2670(99)00859-4.   DOI
17 Gronli MG, Varhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res, 41, 4201 (2002). https://doi.org/10.1021/ie0201157.   DOI
18 Serna-Guerrero R, Sayari A. Modeling adsorption of $CO_2$ on aminefunctionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem Eng J, 161, 182 (2010). https://doi.org/10.1016/j. cej.2010.04.042.   DOI
19 Huang MR, Li XG. Thermal degradation of cellulose and cellulose esters. J Appl Polym Sci, 68, 293 (1998). https://doi.org/10.1002/(sici)1097-4628(19980411)68:2<293::aid-app11>3.0.co;2-z.   DOI
20 Futalan CM, Kan CC, Dalida ML, Pascua C, Wan MW. Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydr Polym, 83, 697 (2011). https://doi. org/10.1016/j.carbpol.2010.08.043.   DOI
21 Yoosefian M, Zahedi M, Mola A, Naserian S. A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube. Appl Surf Sci, 349, 864 (2015). https://doi.org/10.1016/j.apsusc.2015.05.088.   DOI
22 Strelko VV, Kutz VS, Thrower PA. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon, 38, 1499 (2000). https://doi.org/10.1016/s0008-6223(00)00121-4.   DOI
23 Matzner R, Boehm HP. Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons. Carbon, 36, 1697 (1998). https://doi.org/10.1016/s0008-6223(98)90047-1.   DOI
24 Schmiers H, Friebel J, Streubel P, Hesse R, Kopsel R. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis. Carbon, 37, 1965 (1999). https://doi. org/10.1016/s0008-6223(99)00071-8.   DOI