DOI QR코드

DOI QR Code

Adsorption of Cesium from an Aqueous Solution Using Activated Carbon Impregnated with triethylenediamine (TEDA)

Triethylenediamine (TEDA)로 첨착된 활성탄소를 이용한 수용액에서 세슘의 흡착

  • Jong-Soo Choi (Department of Biological and Environmental Engineering, Semyung University) ;
  • Suk Soon Choi (Department of Biological and Environmental Engineering, Semyung University) ;
  • Choong Jeon (Department of Biochemical Engineering, Gangneung-Wonju National University) ;
  • Tae-Young Jeong (Division of Environmental and Energy Engineering, Yonsei University) ;
  • Jeong Hyub Ha (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Jae-Hoon Lee (ENVIONEER Co. Ltd.)
  • 최종수 (세명대학교 바이오환경공학과) ;
  • 최석순 (세명대학교 바이오환경공학과 ) ;
  • 전충 (강릉원주대학교 생명화학공학과) ;
  • 정태영 (연세대학교 환경에너지공학부 ) ;
  • 하정협 (평택대학교 환경융합시스템학과) ;
  • 이재훈 ((주)엔바이오니아 )
  • Received : 2023.08.28
  • Accepted : 2023.09.04
  • Published : 2023.09.30

Abstract

Cesium discharged from nuclear power plants requires technology for safely treating, due to its harmfulness to the human body. In this work, activated carbon impregnated with triethylenediamine (TEDA) process was applied to effectively remove cesium dissolved in aqueous solution. The surfaces on the activated carbon were chemically modified with various TEDA concentrations (2.5, 5.0, 7.5, 10.0, and 12.5%) and the optimal TEDA concentration was obtained to be 5.0% by the assessment for cesium removal efficiency. In addition, when 5.0% TEDA-impregnated activated carbon was used to treat 5.0 and 10.0 mg/L of cesium, the removal efficiency was 71.5% and 61.1%, respectively. Also, it was found to be the chemical adsorption from the adsorption kinetics experiment by temperature change. A novel remediation technology developed in this study could be practically employed for removing cesium contained in surface and ground water.

원자력 발전소에서 유출되는 세슘은 인체의 유해성으로 인하여, 이를 안전하게 처리하는 기술이 요구되고 있다. 본 연구에서는 수용액에 용해된 세슘을 효율적으로 제거하고자, triethylenediamine (TEDA) 첨착 공정을 활성탄소에 적용하였다. 이 실험에서는 활성탄소 표면을 다양한 TEDA(2.5, 5.0, 7.5, 10.0, 12.5%) 농도로 화학적 개질을 하였으며, 세슘 제거효율 평가에 의하여 최적의 TEDA 농도가 5.0%임을 구할 수 있었다. 또한, 5.0% TEDA로 첨착된 활성탄을 사용하여 5.0과 10.0 mg/L의 세슘을 처리하였을 때, 제거효율은 각각 71.5%와 61.1%를 나타내었다. 그리고 온도 변화에 의한 흡착동력학 실험으로부터, 화학적 흡착이 이루어짐을 알 수 있었다. 이 연구를 통하여 얻어진 새로운 복원 기술은 지표수와 지하수에 함유된 세슘을 실용적으로 제거하는데 사용될 수 있을 것이다.

Keywords

Acknowledgement

이 연구는 산업통상자원부 및 한국산업기술평가관리원(KEIT) 연구비 지원에 의한 연구(20012763) 및 환경부가 지원한 녹색혁신기업 성장지원 프로그램으로 지원을 받아 수행된 연구결과입니다(2021003160013).

References

  1. Sopapan, P., Lamdab, U., Akharawutchayanon, T., Issarapanacheewin, S., Yubonmhat, K., Silpradit, W. and Prasertchiewchan, N., "Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash", Nuclear Engineering and Technology, 55(2), pp. 516~522. (2023).  https://doi.org/10.1016/j.net.2022.10.007
  2. Olatunji, M. A., Khandaker, M. U., Mahmud, H. E. and Amin, Y. M., "Influence of adsorption parameters on cesium uptake from aqueous solutions-a brief review", RSC Advances, 5(88), pp. 71658~71683. (2015).  https://doi.org/10.1039/C5RA10598F
  3. Wang, X., Liang, R., Fisher, P., Chan, W. and Xu, J., "Critical design features of thermal-based radioisotope generators: A review of the power solution for polar regions and space", Renewable and Sustainable Energy Reviews, 119, pp. 109572~109591. (2020). 
  4. Falyouna, O., Eljamal, O., Maamoun, I., Tahara, A. and Sugihara, Y., "Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system", Journal of Colloid and Interface Science, 571, pp. 66~79. (2020).  https://doi.org/10.1016/j.jcis.2020.03.028
  5. Lalhmunsiama, L., Kim, J. G., Choi, S. S. and Lee, S. M., "Recent advances in adsorption removal of cesium from aquatic environment", Applied Chemistry for Engineering, 29(2), pp. 127~137. (2018). 
  6. Wang, J. and Zhuang, S., "Removal of cesium ions from aqueous solutions using various separation technologies", Reviews in Environmental Science and Bio/Technology, 18, pp. 231~269. (2019).  https://doi.org/10.1007/s11157-019-09499-9
  7. Hou, C., Lin, W., Yang, L. and Zhang, H., "Experimental performance evaluation and model-based optimal design of a mechanical vapour recompression system for radioactive wastewater treatment", Energy Conversion and Management, 252, pp. 115087~115106. (2022).  https://doi.org/10.1016/j.enconman.2021.115087
  8. Han, E., Kim, Y. G., Yang, H. M., Yoon, I. H. and Choi, M., "Synergy between zeolite framework and encapsulated sulfur for enhanced ion-exchange selectivity to radioactive cesium", Chemistry of Materials, 30(16), pp. 5777~5785. (2018).  https://doi.org/10.1021/acs.chemmater.8b02782
  9. Avramenko, V., Bratskaya, S., Zheleznov, V., Sheveleva, I., Voitenko, O. and Sergienko, V., "Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides", Journal of Hazardous Materials, 186(2-3), pp. 1343~1350. (2011). 
  10. Han, F., Zhang, C., Wang, K. and Wang, K., "Laboratory-scale studies on the removal of cesium with a submerged membrane adsorption reactor", Journal of Radioanalytical and Nuclear Chemistry, 322, pp. 853~859. (2019).  https://doi.org/10.1007/s10967-019-06763-8
  11. Yavari, R., Huang, Y. and Ahmadi, S., "Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes", Journal of Radioanalytical and Nuclear Chemistry, 287(2), pp. 393~401. (2011).  https://doi.org/10.1007/s10967-010-0909-6
  12. Stoquart, C., Vazquez-Rodriguez, G. A., Servais, P. and Barbeau, B., "Gamma irradiation: a method to produce an abiotic control for biological activated carbon", Environmental Technology, 34(23), pp. 3079~3085. (2013). 
  13. Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I. and Sillanpaa, M., "Methods for preparation and activation of activated carbon: a review", Environmental Chemistry Letters, 18, pp. 393~415. (2020). 
  14. Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A. and Shamiri, A., "A review on surface modification of activated carbon for carbon dioxide adsorption", Journal of Analytical and Applied Pyrolysis, 89(2), pp. 143~151. (2010).  https://doi.org/10.1016/j.jaap.2010.07.006
  15. Ho, K., Moon, S., Lee, H. C., Hwang, Y. K. and Lee, C. H., "Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)-metal impregnated activated carbons under humid conditions", Journal of Hazardous Materials, 368, pp. 550~559. (2019).  https://doi.org/10.1016/j.jhazmat.2019.01.078
  16. Lo, S. F., Wang, S. Y., Tsai, M. J. and Lin, L. D., "Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons", Chemical Engineering Research and Design, 90(9), pp. 1397~1406. (2012).  https://doi.org/10.1016/j.cherd.2011.11.020
  17. Zhou, J., Yang, S., Yu, J. and Shu, Z., "Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water", Journal of Hazardous Materials, 192(3), pp. 1114~1121. (2011).  https://doi.org/10.1016/j.jhazmat.2011.06.013
  18. Tsai, S. C. and Juang, K. W., "Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite", Journal of Radioanalytical and Nuclear Chemistry, 243, pp. 741~746. (2000).  https://doi.org/10.1023/A:1010694910170
  19. Lapham, D. P. and Lapham, J. L., "BET surface area measurement of commercial magnesium stearate by krypton adsorption in preference to nitrogen adsorption", International Journal of Pharmaceutics, 568, pp. 118522~118541. (2019).  https://doi.org/10.1016/j.ijpharm.2019.118522
  20. Bardestani, R., Patience, G. S. and Kaliaguine, S., "Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT", The Canadian Journal of Chemical Engineering, 97(11), pp. 2781~2791. (2019).