• 제목/요약/키워드: biofuels

검색결과 133건 처리시간 0.021초

Nuclear power utilization as a future alternative energy on icebreakers

  • M. Bayraktar;M. Pamik
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.580-586
    • /
    • 2023
  • Diversified fuel types such as methanol, hydrogen, liquefied natural gas, ammonia, biofuels, have been come to fore in consideration of the limitations, regulations, environmental perception and efficient use of resources on maritime sector. NE is described as a substantial alternative energy source on the marine vessels in the sense of de-carbonization and fuel efficiency activities carried out by IMO. Although NPVs have been constructed for the merchant, navy and supply fields over the years, their numbers are few and working ranges are quite limited. NE generation techniques, reactor types, safety and security issues in case of any leakage or radiation pollution are analyzed and comparisons are performed between fossil-based fueled and NP based on icebreakers. The comparison are conducted on the basis of dimensions, resistances and operational competences by the VIKOR. NP icebreakers operated in recent years occupy a notable position in the ranking, although fossil fueled ones are most prevalent. Consequently, refueling period and emissions are the principal benefits of NPVs. Nevertheless, the use of such systems on marine vessels especially for merchant ships may come to the fore when all concerns in terms of safety, security and society are resolved since the slightest mistake can have irreversible consequences.

OPTIMAL LINEAR CONTROL APPLIED TO A NON-IDEAL CAPSULE SYSTEM WITH UNCERTAIN PARAMETERS

  • ROEFERO, LUIZ GUSTAVO PEREIRA;CHAVARETTE, FABIO ROBERTO;OUTA, ROBERTO;MERIZIO, IGOR FELICIANI;MORO, THIAGO CARRETA;MISHRA, VISHNU NARAYAN
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.351-370
    • /
    • 2022
  • The design of mechanical structures aims to meet criteria, together with the safety of operators and lives in the vicinity of the equipment. Thus, there are several cases that meeting the desired specification causes the mechanical device to perform unstable and, sometimes, chaotic behavior. In these cases, control methods are applied in order to stabilize the device when in operation, aiming at the physical integrity of the component and the device operators. In this work, we will develop a study about the influence of a controller applied in a non-ideal capsule system operating with uncertain parameters, being non-existent in the literature. For this, two initial conditions were used: one that the capsule starts from rest and another that it is already in motion. Thus, the effectiveness of the controller can be assessed in both initial conditions, restricting the movement of the internal vibration-impact system to the capsule.

미세조류 이용 바이오디젤 항공유 기술개발 동향 연구 (A Research of Trends in Development of Bio-Diesel Aviation Fuel Technology using Microalgae)

  • 윤한영
    • 한국항공운항학회지
    • /
    • 제32권2호
    • /
    • pp.151-158
    • /
    • 2024
  • Microalgae are aquatic microorganisms capable of photosynthetic growth using water, carbon dioxide and sunlight, and can replace petroleum for transportation. It is receiving great attention as a potential next-generation biological resource. The microalgae biodiesel production process is largely based on the development of highly efficient strains and mass production. It consists of cultivation, harvesting, oil extraction, fuel conversion and by-product utilization. Currently, microalgae diesel is 3-5 times more expensive than petroleum diesel. However, with the optimization of each element technology and the development of integrated systems, not only biofuels, but also industrial materials, wastewater treatment, and greenhouse gases As application expands to various fields such as abatement, the timing of commercialization may be brought forward. Oil prices have recently fallen due to the influence of sail gas. Although there has been a significant drop, global warming is an urgent challenge for current and future generations. In particular, Korea, which does not have oil resources, We must always prepare for political environmental changes, high oil prices, and energy crises. In this paper, the need for eco-friendly biofuel for carbon dioxide conversion. In addition to research trends, domestic and international research trends, and economic prospects, the concept of microalgae and the element technologies of the biodiesel production process are briefly discussed introduced.

Improving the Calorific Value of Nyamplung (Calophyllum inophyllum L.) Seed Shell Pellets by Torrefaction Treatment for Their Use as a Renewable Energy Resource

  • Johanes Pramana Gentur SUTAPA;Geraldy KIANTA;Budi LEKSONO;Ahmad Harun HIDAYATULLAH
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권4호
    • /
    • pp.363-374
    • /
    • 2024
  • Nyamplung (Calophyllum inophyllum L.) seeds, which account for 40% of the fruit, have been used as a raw material for biofuels, and the seed shells remaining after their extraction are wasted. In this study, we investigated the potential of waste Nyamplung seed shells in the form of pellets as a biomass energy resource. A completely randomized research design was implemented to evaluate the effects of torrefaction and heat treatment on the quality of produced pellets. Two observed treatments, namely, particle size (0.18-0.25, 0.25-0.43, and 0.43-0.84 mm) and torrefaction temperature (200℃, 225℃, and 250℃), were investigated. Our results showed that the calorific value of torrefied Nyamplung seed-shell pellets ranged from 4,245.60 to 4,528.00 cal/g, fulfilling the Indonesia Nasional Standard (≥ 4,000 cal/g). The quality of pellets were the best when produced from raw materials with a particle size of 0.18-0.25 mm and torrefaction temperature of 225℃. Thus, we concluded that waste Nyamplung seed shells are a good raw material for the production of pellets.

선박디젤기관에 있어서 바이오연료가 배기배출물특성에 미치는 영향 (Effects of the Characteristics of Exhaust Emissions by Using Bio Fuel in Marine Diesel Engine)

  • 조상곤
    • 해양환경안전학회지
    • /
    • 제21권1호
    • /
    • pp.103-108
    • /
    • 2015
  • 최근 지구 온난화는 세계 경제발전으로 화석연료 사용이 주범으로 인식하고 있다. 이러한 화석연료를 감소하기 위한 연구는 여러 대체에너지 산업으로 발전하고 있으며, 그 중 우리나라에서 생산할 수 있는 연료는 바이오연료이다. 바이오연료는 화석연료에 의해서 발생하는 환경오염 문제를 줄이면서 경제적인 이익을 주는 지속 가능한 연료이다. 그래서 바이오연료를 친환경에너지로 전환시키는 재생에너지 등에 많은 연구가 진행되고 있다. 따라서 본 실험은 어선에서 사용했던 기관을 다시 리모델링하여 실험장치를 직접 제작 설치하였고, 여러 바이오연료를 사용하여 선박의 경제적이고 친환경적인 운항에 도움을 주고자 연구하였다. 유채유, 대두유, 폐유채유의 배기배출 물특성에 미치는 영향을 종합적으로 분석한 결과는 연료의 물리적, 화학적 성분이 비슷하여 선박용 엔진에 사용이 가능하고, 연료소비율과 NOx는 약간 증가하였으나, 매연은 많이 감소하는 경향이 확인되었다.

Morphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea

  • Jeon, Seon-Mi;Kim, Ji Hyung;Kim, Taeho;Park, Areumi;Ko, Ah-Ra;Ju, Se-Jong;Heo, Soo-Jin;Oh, Chulhong;Affan, Md. Abu;Shim, Won-Bo;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.723-731
    • /
    • 2015
  • Microalgae hold promise as producers of sustainable biomass for the production of biofuels and other biomaterials. However, the selection of strains with efficient and robust production of desirable resources remains challenging. In this study, we isolated a green microalga from Korea and analyzed its morphological, molecular, and biochemical characteristics. Microscopic and phylogenetic analyses demonstrated that the isolate could be classified into the genus Chlamydomonas, and we designated the isolate Chlamydomonas sp. KIOST -1. Compositions of protein, lipid, and carbohydrate in the microalgal cells were estimated to be 58.8 ± 0.2%, 22.7 ± 1.2%, and 18.5 ± 1.0%, respectively. Similar to other microalgae belonging to Chlorophyceae, the dominant amino acid and monosaccharide in Chlamydomonas sp. KIOST-1 were glutamic acid and glucose. On the other hand, the proportions of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids clearly differed from other species in the genus Chlamydomonas, and monounsaturated fatty acids accounted for a large portion (41.3%) of the total fatty acids in the isolate. Based on these results, Chlamydomonas sp. KIOST-1 has advantageous characteristics for biomass production.

항공분야 온실가스 감축을 위한 바이오항공유 제조기술 (Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector)

  • 김재곤;박조용;임의순;민경일;박천규;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

바이오디젤 원료 작물 품종 개량과 생명공학기술 응용 (Biodiesel: Oil-crops and Biotechnology)

  • 노경희;박종석
    • Applied Biological Chemistry
    • /
    • 제50권3호
    • /
    • pp.137-146
    • /
    • 2007
  • 지구 온난화의 주 원인인 온실가스의 배출을 감소시키기 위해서 바이오연료에 대한 필요성 및 중요성이 제기되어 왔다. 이미 유럽을 중심으로 오래전부터 바이오디젤 연료에 대한 연구가 시작되어 왔으며 지금은 상용화 단계에 접어들고 있는 반면, 국내 바이오디젤 연료에 대한 연구 수준은 이제 시작단계에 불과한 실정이다. 바이오디젤 연료로 사용가능한 유지작물의 지방산 조성에 따라 자동차 엔진 성능이 저하될 수 있다는 문제가 제기되었고, 이를 해결하고자 표준화된 바이오디젤 품질 규격서가 마련되어졌다. 유럽에서 마련된 바이오디젤 규격에 의하면 올레인산 함량이 높은 기름이 바이오디젤 연료로 적합하며, 유채기름이 다른 유지작물의 기름에 비하여 바이오디젤 연료에 적합하다고 알려져 있다. 따라서 국내 유지작물의 바이오디젤 연료화를 위한 품질 개량과 생산량 증대를 위해 생명공학기술을 이용한 품종 개량에 관한 연구 전략에 대해 고찰하였다.

Novel Endoxylanases of the Moderately Thermophilic Polysaccharide-Degrading Bacterium Melioribacter roseus

  • Rakitin, Andrey L.;Ermakova, Alexandra Y.;Ravin, Nikolai V.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1476-1484
    • /
    • 2015
  • Three endoxylanase-encoding genes from the moderately themophilic chemoorganotrophic bacterium Melioribacter roseus were cloned and expressed in Escherichia coli. Genes xyl2091 (Mros_2091) and xyl2495 (Mros_2495) encode GH10 family hydrolases, whereas xyl2090 (Mros_2090) represents the GH30 family. In addition to catalytic domains, Xyl2090 and Xyl2091 contain carbohydrate-binding modules that could facilitate their binding to xylans and Por sorting domains associated with the sorting of proteins from the periplasm to the outer membrane, where they are covalently attached. Recombinant endoxylanase Xyl2495 exhibited a high specific activity of 1,920 U/mg on birchwood xylan at 40℃. It is active at low temperatures, exhibiting more than 30% of the maximal activity even at 0℃. Endoxylanases Xyl2090 and Xyl2091 have lower specific activities but higher temperature optima at 80℃ and 65℃, respectively. Analysis of xylan hydrolysis products revealed that Xyl2090 generates xylo-oligosaccharides longer than xylopentaose. Xylose and xylobiose are the major products of xylan hydrolysis by the recombinant Xyl2091 and Xyl2495. No activity against cellulose was observed for all enzymes. The presence of three xylanases ensures efficient xylan hydrolysis by M. roseus. The highly processive "free" endoxylanase Xyl2495 could hydrolyze xylan under moderate temperatures. Xylan hydrolysis at elevated temperatures could be accomplished by concerted action of two cell-bound xylanases; Xyl2090 that probably degrades xylans to long xylo-oligosaccharides, and Xyl2091 hydrolyzing them to xylose and xylobiose. The new endoxylanases could be useful for saccharification of lignocellulosic biomass in biofuels production, bleaching of paper pulp, and obtaining low molecular weight xylooligosaccharides.

Development of Novel Microsatellite Markers for Strain-Specific Identification of Chlorella vulgaris

  • Jo, Beom-Ho;Lee, Chang Soo;Song, Hae-Ryong;Lee, Hyung-Gwan;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1189-1195
    • /
    • 2014
  • A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.