Browse > Article
http://dx.doi.org/10.4014/jmb.1412.12056

Morphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea  

Jeon, Seon-Mi (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Kim, Ji Hyung (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Kim, Taeho (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Park, Areumi (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Ko, Ah-Ra (Deep-sea and Seabed Resources Research Division, Korea Institute of Ocean Science and Technology)
Ju, Se-Jong (Deep-sea and Seabed Resources Research Division, Korea Institute of Ocean Science and Technology)
Heo, Soo-Jin (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Oh, Chulhong (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Affan, Md. Abu (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Shim, Won-Bo (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Kang, Do-Hyung (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 723-731 More about this Journal
Abstract
Microalgae hold promise as producers of sustainable biomass for the production of biofuels and other biomaterials. However, the selection of strains with efficient and robust production of desirable resources remains challenging. In this study, we isolated a green microalga from Korea and analyzed its morphological, molecular, and biochemical characteristics. Microscopic and phylogenetic analyses demonstrated that the isolate could be classified into the genus Chlamydomonas, and we designated the isolate Chlamydomonas sp. KIOST -1. Compositions of protein, lipid, and carbohydrate in the microalgal cells were estimated to be 58.8 ± 0.2%, 22.7 ± 1.2%, and 18.5 ± 1.0%, respectively. Similar to other microalgae belonging to Chlorophyceae, the dominant amino acid and monosaccharide in Chlamydomonas sp. KIOST-1 were glutamic acid and glucose. On the other hand, the proportions of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids clearly differed from other species in the genus Chlamydomonas, and monounsaturated fatty acids accounted for a large portion (41.3%) of the total fatty acids in the isolate. Based on these results, Chlamydomonas sp. KIOST-1 has advantageous characteristics for biomass production.
Keywords
Microalgae; Chlamydomonas sp. KIOST-1; phylogenetic analysis; monounsaturated fatty acids; biomass; Korea;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI
2 Nichlos PD, Guckert JB, White DC. 1986. Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J. Microbiol. Methods 5: 49-55.   DOI   ScienceOn
3 Pröschold T, Marin B, Schlösser UG, Melkonian M. 2001. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152: 265-300.   DOI   ScienceOn
4 Ringo DL. 1967. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol. 33: 543-571.   DOI
5 Spurr AR. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31-43.   DOI
6 Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19: 430-436.   DOI   ScienceOn
7 Salama ES, Kim HC, Abou-Shanab RI, Ji MK, Oh YK, Kim SH, et al. 2013. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst. Eng. 36: 827-833.   DOI   ScienceOn
8 Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96.   DOI   ScienceOn
9 Stansell GR, Gray VM, Sym SD. 2012. Microalgal fatty acid composition: implications for biodiesel quality. J. Appl. Phycol. 24: 791-801.   DOI
10 James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, et al. 2001. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 102: 3343-3351.   DOI   ScienceOn
11 Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191-194.   DOI
12 Knothe G. 2008. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22: 1358-1364.   DOI   ScienceOn
13 Kothari R, Prasad R, Kumar V, Singh DP. 2013. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour. Technol. 144: 499-503.   DOI   ScienceOn
14 Melis A. 2002. Green alga hydrogen production: progress, challenges and prospects. Int. J. Hydrogen Energy 27: 1217-1228.   DOI   ScienceOn
15 Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD. 1999. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70: 1009-1015.   DOI
16 Levasseur M, Thompson P, Harrison PJ. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29: 587-595.   DOI   ScienceOn
17 Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications. A review. Renew. Sust. Energy Rev. 14: 217-232.   DOI   ScienceOn
18 Choi SP, Nguyen MT, Sim SJ. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101: 5330-5336.   DOI   ScienceOn
19 Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250.   DOI   ScienceOn
20 Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.   DOI   ScienceOn
21 Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM. 1992. Biochemical composition of microalgae from green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. Exp. Mar. Biol. Ecol. 161: 115-134.   DOI   ScienceOn
22 Gillingham LG, Harris-Janz S, Jones PJ. 2011. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 46: 209-228.   DOI   ScienceOn
23 Harris EH. 2009. The Chlamydomonas Sourcebook. Introduction to Chlamydomonas and its Laboratory Use , 2nd Ed. Academic Press, San Diego, California.
24 Harun R, Danquah MK, Forde GM. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85: 199-203.
25 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
26 Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH. 2002. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J. Phycol. 38: 1051-1064.   DOI   ScienceOn
27 Becker EW. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25: 207-210.   DOI   ScienceOn
28 Hong JW, Jeong J, Kim SH, Kim S, Yoon HS. 2013. Isolation of a Korean domestic microalga, Chlamydomonas reinhardtii KNUA021, and analysis of its biotechnological potential. J. Microbiol. Biotechnol. 23: 375-381.   DOI   ScienceOn
29 An M, Mou S, Zhang X, Zheng Z, Ye N, Wang D, et al. 2013. Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour. Technol. 149: 77-83.   DOI   ScienceOn
30 AOAC. 2006. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed. AOAC International, Gaitherburg, Maryland.
31 Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.   DOI
32 Brown MR, Jeffrey SW. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161: 91-113.   DOI   ScienceOn
33 Buchheim MA, Lemieux C, Otis C, Gutell RR, Chapman RL, Turmel M. 1996. Phylogeny of the chlamydomonadales (Chlorophyceae): a comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. Mol. Phylogenet. Evol. 5: 391-402.   DOI   ScienceOn
34 Burlew JS. 1953. Algal Culture: From Laboratory to Pilot Plant. Carnegie Institution of Washington Publication, Washington, DC.
35 Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T. 2012. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng. 109: 1947-1957.   DOI   ScienceOn
36 Teres S, Barcelo-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escriba PV. 2008. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 37: 13811-13816.   DOI   ScienceOn
37 Weers PMM, Gulati RD. 1997. Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus and nitrogen in Chlamydomonas reinhardtii. Limnol. Oceanogr. 42: 1584-1589.   DOI
38 Tamburic B, Zemichael FW, Maitland GC, Hellgardt K. 2011. Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 36: 7872-7876.   DOI   ScienceOn
39 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.   DOI   ScienceOn