• Title/Summary/Keyword: biofilter

Search Result 363, Processing Time 0.025 seconds

Control of Dimethyl Sulfide Emissions Using Biofiltration

  • Kong, Sei-Hun;Kim, Jo-Chun;Allen, Eric R.;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.819-827
    • /
    • 2002
  • Laboratory scale experiments were conducted to evaluate the performance of a biofilter for eliminating dimethyl sulfide(DMS). A commercial compost/pine bark nugget mixture served as the biofilter material for the experiments. The gas flow rate and DMS concentration entering the filter were varied to study their effect on the biofilter efficiency. The operating parameters, such as the residence time, inlet concentration, pH, water content, and temperature, were all monitored throughout the filter operation. The kinetic dependence of the DMS removal along the column length was also studied to obtain a quantitative description of the DMS elimination. High DMS removal efficiencies(>95%) were obtained using the compost filter material seeded with activated sludge. DMS pollutant loading rates of up to 5.2 and 5.5 g-DMS/m$^3$/hr were effectively handled by the upflow and downflow biofilter columns, respectively. The macrokinetics of the DMS removal were found to be fractional-order diffusion-limited over the 9 to 25 ppm range of inlet concentrations tested. The upflow column had an average macrokinetic coefficient(K$\_$f/) of 0.0789 $\pm$ 0.0178 ppm$\^$$\sfrac{1}{2}$//sec, while the downflow column had an average coefficient of 0.0935 $\pm$ 0.0200 ppm$\^$$\sfrac{1}{2}$//sec. Shorter residence times resulted in a lower mass transfer of the pollutant from the gas phase to the aqueous liquid phase, thereby decreasing the efficiency.

Removal of Hydrogen Sulfide, Ammonia, and Benzene by Fluidized Bed Reactor and Biofilter

  • Kim, Chong-Woo;Park, Jin-Su;Cho, Sung-Ki;Oh, Kwang-Joong;Kim, Young-Sik;Kim, Dong-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.301-304
    • /
    • 2003
  • In this study, hydrogen sulfide ($H_2S$), ammonia ($NH_3$), and benzene, which represent the major odor from a natural leather process plant, were removed using a fluidized bed bioreactor and biofilter including Thiobacillus sp. IW and a MY microbial consortium. The critical removal rate was $12g m^{-3}h^{-1}\;for\;H_2S,\;11g m^{-3}h^{-1}\;for\;NH_3\;and\;28 g m^{-3}h^{-1}$ for benzene by the fluidized bed bioreactor, and $8.5g m^{-3}h^{-1}\;for\;H_2S\;7g m^{-3}h^{-1}\;for\;NH_3,\;and\;25 g m^{-3}h^{-1}$ for benzene in the biofilter. The average removal efficiency of $H_2S$, $NH_3$, and benzene by continuous operation for over 30 days with the fluidized bed bioreactor was $95{\pm}3\%,\;99{\pm}1\%,\;and\;98{\pm}5\%$, respectively, whereas that with the biofilter was $96{\pm}4\%,\;95{\pm}4\%,\;and\;97{\pm}3\%$, respectively. Therefore, the critical removal rate of $H_2S$, $NH_3$, and benzene was higher in the fluidized bed bioreactor, whereas the removal efficiency on the continuous operation was similar in both bioreactors.

Treatment of Malodorous Waste Air by a Biofilter Process Equipped with a Humidifier Composed of Fluidized Aerobic and Anoxic Reactor (폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정을 이용한 악취폐가스의 처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • In this research, a biofilter system equipped with a biofilter process and a humidifier composed of a fluidized aerobic and an anoxic reactor, was constructed to treat odorous waste air containing hydrogen sulfide, ammonia and VOC, frequently generated from pig and poultry housing facilities, compost manufacturing factories and publicly owned facilities. Its optimum operating condition was revealed and discussed. In the experiment of complex feed, the ammonia of fed-waste air was removed by ca. 75% and more than 20% at the stage of the humidifier and the biofilter, respectively. The toluene of the fed-waste air was removed by ca. 20% and more than 70% at the stage of the humidifier and the biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of the humidifier and the biofilter, respectively. In addition, hydrogen sulfide was almost absorbed at the stage of the humidifier so that it was not detected at the biofilter process. In the experiment of ammonia-containing feed, the ammonia of fed-waste air was removed by ca. 65% and 35% at the stage of the humidifier and the biofilter, respectively. Its removal efficiency of ammonia at the stage of the humidifier was 10% less than that in the experiment of complex feed, due to no supply of such carbon source as toluene required in the process of denitrification. In the experiments of complex feed, ammonia-containing feed with and without (instead, glucose) the addition of yeast extract, the absorption rates of ammonia-nitrogen were ca. 0.28 mg/min, 0.23 mg/min and 0.27 mg/min, respectively. The corresponding denitrification rates in the anoxic reactor were 0.42 mg/min, 0.55 mg/min and 0.27 mg/min, respectively. In addition, in the modeling of bubble column(the fluidized aerobic reactor of the humidifier) process, the value of specific surface area(a) of bubbles multiplied by enhanced mass transfer coefficient (E $K_y$) was evaluated to be 0.12/hr.

The study for the effect of biofilter and ultra-violet disinfector in fish-breeding place using seawater (폐쇄순환 양식장에서의 생물여과기 (biofilter) 및 자외선살균기(ultra-violet disinfector)효과에 대한 연구)

  • 강청근;노기완;류시영;조충희
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.4
    • /
    • pp.357-361
    • /
    • 1999
  • The most harmful nitrogenous compounds in fish-breeding place using are ammonia and nitrate. Excessively high total nitrogen concentration is the signal of unbalance for breeding fishes in seawater and may result overfeeding or overstocking without seawater treatment system. The failure of elimination for the organic ingredients or nitrogen compounds can also cause the consequence of inadequate oxygen concentration in seawater, either. The study shows the effect of biofilter and W disinfector of seawater in the fish- breeding place. In the results, these tools had ammonia, nitrite, nitrate and decreased 71.8%, 27.6% and 1%, respectively, and the total number of microorganisms decreased up to 81.9%.

  • PDF

A Study on Microbial Degradation for Removal of Toluene Vapour by Biofilter (Bio 필터를 이용한 Toluene 제거에서 미생물분해에 관한 연구)

  • 하상안;강신묵
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1999
  • A biological filter for treatment of toluene among volatile organic compounds was studied. The investigation was conducted using specially built stainless steel columns packed with granular activated carbon and cold for removal of toluene. The G.A. and mold as filter material was also coated with Pseudomonas putida microorganisms.The biofilter unit was operated in the condition of moisture content vairation at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C equipped with F.I.d detector. The removal efficiency of gaseous toluene was 95% at average inlet concentration of 950 ppm during bio-degradation operating condition. Effective removal efficiency was obtained with moisture content 27.5% at activated carbon and 32% at mold in this study. The effective operating condition were obtained with pH 6-8, temperature 28-42℃ for microbial degradation at gas loading rate of 12.5 l/min in packed material.

  • PDF

바이오필터에 의한 VOC 분해에 미치는 온도와 유입농도의 영향

  • Yun, Jin-Gil;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.93-94
    • /
    • 2001
  • Biofilter operating parameters such as incoming VOCs concentrations, temperature, and packing materials were studied. The performance of a lab-scale biofilter in the treatment of air contaminated with mixtures vac has been evaluated in this study. The biofilter was operated for 80 days packed with compost. Empty bed residence time (EBRT) was 3 to 1.5 min. After 80 days of operation, the removal efficiency was 94% and 73% at $25^{\circ}C$ and $45^{\circ}C$, respectively. Removal efficiencies of m-xylene (93%), o-xylene (92%) and toluene (92%) were better than that of benzene (84.7%).

  • PDF

화산석을 충전한 Biofilter에서 Ethyl acetate와 2-Butanol 제거특성에 관한 연구

  • 임진관;주창식;감상규;이동환;이민규
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.34-37
    • /
    • 2003
  • 화산석 담체를 충전한 biofilter에서의 ethyl acetate와 2-butanal의 혼합가스의 제거특성에 관한 실험결과는 다음과 같았다. 유입농도 변화 실험에서 EBCT를 30 sec로 유지한 채 혼합가스의 유입농도를 50 ~ 550 ppm 까지 단계적으로 농도를 증가시키면서 살펴본 결과 ethyl acetate는 300 ppm까지 99.9%의 제거효율을 보였으며, 2-butanol은 250 ppm까지 99.9%의 제거효율을 보였다. 유입유량 변화 실험에서 혼합가스의 유입농도를 150 ppm로 일정하게 하고서 EBCT를 60, 30, 15, 10 및 7.5 sec로 단계적으로 감소시킨 결과, EBCT가 15 sec로 유지하여 운전하더라고 99.9%의 높은 제거효율을 보였다. 또한 ethyl acetate 및 2-butanol의 최대제거용량은 각각 180 b/㎥/hr로 산정되었다. 이러한 결과들은 화산석이 biofilter의 충전 담체로 우수함을 보여주었다.

  • PDF

Sewage Treatment Characteristics and Efficiencies of Absorbent Biofilter Systems (흡수성 바이오필터 시스템의 오수처리 특성 및 효율)

  • Cheon, Gi-Seol;Kwun, Soon-Kuk;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.131-139
    • /
    • 2004
  • In this study, on-site sewage treatment tests were conducted using the Absorbent Biofilter System (ABS) under different hydraulic loading rates to examine its treatment characteristics and efficiencies and to determine its feasibility as a small on-site sewage treatment system in a rural area. Results showed that the removal rates of BOD and SS were satisfactory at hydraulic loading rates of 100~150 cm/day, meeting the Korean effluent water quality standards for the riparian zone (10 mg/L). In the case of nutrients (N, P), however, the system did not perform well, necessitating further improvement for nutrient removal. A comparative analysis indicated that as a small on-site sewage treatment system, the ABS would be more suitable than other treatment systems in terms of performance stability, maintenance requirement, and cost-effectiveness and could be applied as an alternative treatment system in Korean rural areas.

Removal of Dimethyl Sulfide in Ceramic Biofilters Immobilized with Thiobacillus thioparus TK-m

  • Kim, Jong-Yeon;Kim, Byung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.866-871
    • /
    • 2003
  • Malodorous gas of dimethyl sulfide (DMS) was biologically oxidized to sulfate by Thiobacillus thioparus TK-m (DSM5368) immobilized in/on ceramic beads. More than 99.99% of DMS removal efficiency was obtained in a ceramic-biofilter reactor of 3.91 when the feed concentrations were about 27.5 and 55.0 mg DMS/1 at $30^{circ}C$. However, the removal efficiency of the biofilter at above $40^{circ}C$ decreased to 4.5 mg DMS/(lㆍmin) which was 85% of that at $30^{circ}C$.

A Study on Toluene Removal of VOC and Characteristics of Material Using Biofilter (Bio필터를 이용한 VOC 가스 중 Toluene 제거율과 필터특성 연구)

  • 강신묵;하상안
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.88-94
    • /
    • 1998
  • This study was investigated the application of biofiltration using cometabolic process to remediate gaseous toluene that are highly recalcitrant to adsorption, absorption and biodegradation. The investigation was conducted using specially built steel columns packed with granular activated carbon for removal of toluene and G.A.C was also coated with Pseudomonas putida microorganisms by addition of KH$_{2}$PO$_{4}$. The biofilter unit was operated in the condition of dry and 27.5% moisture content at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C. equipped with F.I.D. detector. The removal efficiency of gaseous toluene was 85% at average inlet concentration of 970 ppm during dry operating condition. For gaseous toluene, 91% removal efficient was obtained at the filter material with moisture content and 97% removal efficiency was obtained with Pseudomonas putida microorganisms at gas loading rate of 12.5 l/min.

  • PDF