• 제목/요약/키워드: biodegradable scaffolds

검색결과 61건 처리시간 0.026초

Preparation and Characterization of Demineralized Bone Particle Impregnated Poly(L-lactide) Scaffolds

  • Gilson Khang;Park, Chong-Soo;John M. Rhee;Lee, Sang-Jin;Lee, Young-Moo;Park, Myoung-Kyu;Lee, Hai-Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • 제9권5호
    • /
    • pp.267-276
    • /
    • 2001
  • In order to endow with new bioactive functionality from demineralized bone particle (DBP) as natural source to poly(L-lactide) (PLA) synthetic biodegradable polymer, porous DBP/PLA as natural/synthetic composite scaffolds were prepared and compared by means of the emulsion freeze drying and solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. For the emulsion freeze drying method, it was observed that the pore size decreased in the order of 79$\mu\textrm{m}$ (PLA control) > 47$\mu\textrm{m}$ (20% of DBP) > 23 $\mu\textrm{m}$ (40% of DBP) > 15$\mu\textrm{m}$ (80% of DBP). Porosities as well as specific pore areas decreased with increasing the amount of DBR. It can be explained that DBP acts like emulsifier resulting in stabilizing water droplet in emulsion. For the solvent casting/salt leaching method, a uniform distribution of well interconnected pores from the surface to core region were observed the pore size of 80 ∼70 $\mu\textrm{m}$ independent with DBP amount. Porosities as well as specific pore areas also were almost same. For pore size distribution by the mercury intrusion porosimeter analysis between the two methods, the pore size distribution of the emulsion freeze drying method was broader than that of the solvent casting/salt leaching method due to the mechanism of emulsion formation. Scaffolds of PLA alone, DBP/PLA of 40 and 80%, and DBP powder were implanted on the back of athymic nude mouse to observe the effect of DBP on the induction of cells proliferation by hematoxylin and eosin staining for 8 weeks. It was observed that the effect of DBP/PLA scaffolds on bone induction are stronger than PLA scaffolds, even though the bone induction effect of DBP/PLA scaffold might be lowered than only DBP powder, that is to say, in the order of DBP only > DBP/PLA scaffolds of 40 and 80% DBP > PLA scaffolds only for osteoinduction activity. In conclusion, it seems that DBP plays an important role for bone induction in DBP/PLA scaffolds for the application of tissue engineering area.

  • PDF

Comparative Study of Seeding and Culture Methods to Vascular Smooth Muscle Cells on Biodegradable Scaffold

  • Kim, Dong-Ik;Park, Hee-Jung;Eo, Hyun-Seoun;Suh, Soo-Won;Hong, Ji-Hee;Lee, Min-Jae;Kim, Jong-Sung;Jang, In-Sung;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.707-714
    • /
    • 2004
  • How to improve the cell culture method on scaffolds is important in the tissue engineering fileld. In this study, we optimized seeding and culture methods to vascular smooth muscle cells (VSMCs) on biodegradable polymer scaffold. The primary culture of VSMCs obtained from canine external jugular vein was accomplished by applying the explant-derived method. The primary cultured VSMCs were seeded into scaffolds and then cultured by using various different methods; static or dynamic seeding, static or dynamic culture. The difference in proliferative response of VSMCs was analyzed with an alamar blue assay. Cell-polymer construct was examined by histochemical method and scanning electron microscopy. Mesh type scaffold ($10 \times 10 \times0.4 mm$) was made of polyglycolic acid (PGA) suture thread. The PGA mesh type scaffold was 45% in porosity, and 0.03 g in weight. The primary cultured VSMCs were confirmed with immunohistochemical staining using monoclonal anti-$\alpha$-smooth muscle actin. The density and distribution of proliferated VSMCs within the scaffold and cellular adherence on the surface of the scaffold showed better results in the static seeding condition than in the dynamic condition. Under the same condition of seeding method as the static condition, the dynamic culture condition showed enhanced proliferation rates of the VSMCs when compared to the static culture condition. In conclusion, to improve the VSMCs proliferation in vitro, static seeding is better than the dynamic condition. In the culture condition, however, culture under the dynamic status is better than the static condition. This was a pilot study to manufacture artificial vascular vessel by tissue engineering.

3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가 (Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold)

  • 사민우;김종영
    • 대한기계학회논문집A
    • /
    • 제38권4호
    • /
    • pp.371-377
    • /
    • 2014
  • 조직 공학에 있어 인공지지체는 손상된 조직 및 기관의 기능을 재생하기 위한 거푸집으로 제공되며 3 차원 구조물이다. 인공지지체의 재료 중에서 폴리카프로락톤(Polycaprolactone, PCL)과 삼인산칼슘(${\beta}$-tricalcium phosphate, ${\beta}$-TCP)은 생분해성과 생체적합성을 가지고 있다. 본 연구에서는 다축 인공지지체 제작 시스템을 이용하여 3 차원 PCL, blended PCL(60 wt %)/${\beta}$-TCP(40 wt %), 그리고 ${\beta}$-TCP 인공지지체를 제작하였다. 제작된 인공지지체는 주사전자현미경 분석을 통해 $600{\pm}20{\mu}m$의 공극 크기로 잘 제작되었다. 기계적 특성 평가를 통해 3 차원 PCL, blended PCL(60 wt %)/${\beta}$-TCP(40 wt %), 그리고 ${\beta}$-TCP 인공지지체의 효과는 분석되었다. 게다가 Saos-2 세포를 이용한 in vitro 연구를 수행하여 세포 증착 및 증식과 같은 세포 거동에 의한 3 차원 인공지지체의 효과를 확인하였다. 요컨대 3D blended PCL(60 wt %)/${\beta}$-TCP(40 wt %) 인공지지체가 압축 강도와 생체적합성 그리고 골전도성에 있어서 인체의 해면골에 더욱 적합하였다. 따라서 3D 인공지지체의 제작에 있어 PCL과 ${\beta}$-TCP를 혼합하는 것은 효과적인 골 재생을 위해 촉망되는 전략이 될 것이다.

조형가공기술을 이용한 인공지지체의 수산화나트륨 개질 효과 (Effect of Sodium Hydroxide Treatment on Scaffold by Solid Freeform Fabrication)

  • 박수아;이정복;김양은;김지은;권일근;이준희;김완두;김형근;김미은;이준식
    • 폴리머
    • /
    • 제38권6호
    • /
    • pp.815-819
    • /
    • 2014
  • 조직공학에서의 인공지지체는 세포의 부착과 증식 및 분화가 잘 되어야 하고, 우수한 생체친화성 및 생분해성을 지녀야 한다. 다양한 인공지지체 제작 방법이 시도되어지고 있으며, 최근들어 3D 프린팅 기술을 이용한 방식이 활발하게 연구되어지고 있다. 폴리카프로락톤(polycaprolactone, PCL)은 낮은 녹는점을 가지고 있어 3D 프린팅하기에 우수한 생체적합 고분자 합성재료이다. 본 연구에서는 3D 프린팅 기술을 이용하여 3차원 PCL 인공지지체를 제작하였고, 지지체의 표면개질을 위해 수산화나트륨(NaOH)을 이용하였다. 표면개질된 인공지지체의 표면특성을 SEM으로 확인한 결과, 수산화나트륨을 처리한 PCL 인공지지체가 처리하지 않은 PCL 인공지지체에 비해 거칠기가 증가함을 보였으며, 접촉각 측정을 통해 친수성이 증가함을 확인하였다. In vitro 실험결과, 수산화나트륨을 처리한 PCL 인공지지체가 처리하지 않은 PCL 인공지지체에 비해 세포의 증식과 분화가 증가함을 보였고, 세포의 부착 모습은 균일하고 밀집된 형태로 부착됨을 확인하였다. 따라서 조형가공기술을 이용하여 수산화나트륨을 처리한 표면개질된 PCL 인공지지체를 제작하고 분석함으로써, 세포적합성을 통해 체내 인공지지체 개발 적용 가능성을 제시하였다.

Use of Neonatal Chondrocytes for Cartilage Tissue Engineering

  • KANG SUN WOONG;PARK JUNG HO;KIM BYUNG SOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.259-264
    • /
    • 2005
  • Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/ safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosarninoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

PCL/TiO2 Nanoparticle 3차원 지지체 제조 및 특성 평가 (Fabrication and Characterization of PCL/TiO2 Nanoparticle 3D Scaffold)

  • 김정호;이옥주;;주형우;문보미;박현정;박찬흠
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.150-155
    • /
    • 2014
  • Polycaprolactone(PCL)은 생분해성 고분자로 인장강도, 신장률, 충격강도 등의 기계적 물성이 우수하다. $TiO_2$ (titanium dioxide) nanoparticle은 친수성으로 밀도가 높고 생체적합성이 우수하다. 본 연구에서는 PCL과 $TiO_2$(titanium dioxide) nanoparticle을 이용하여 salt-leaching방법으로 3차원 다공성 지지체를 제작하였다. 제작한 지지체를 FESEM, FTIR, TGA, 압축강도 측정 등을 통해 물성을 분석하였다. $TiO_2$ nanoparticle에 의해 물흡수도와 팽윤도는 감소하였으나 압축강도는 증가하였다. CCK-8 assay를 통해 세포의 증식률을 확인한 결과, $TiO_2$ nanoparticle에 의한 세포 독성은 없는 것으로 확인되었다. 이러한 연구결과는 PCL/$TiO_2$ nanoparticle 지지체의 생체재료로 사용가능성을 제시하였다.

Growth Factor Releasing Porous Poly (${\varepsilon}-caprolactone$)-Chitosan Matrices for Enhanced Bone Regenerative Therapy

  • Im, Su-Yeon;Cho, Seon-Hye;Hwang, Jeong-Hyo;Lee, Seung-Jin
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.76-82
    • /
    • 2003
  • Drug releasing porous poly($\varepsilon$-caprolactone) (PCL)-chitosan matrices were fabricated for bone regenerative therapy. Porous matrices made of biodegradable polymers have been playing a crucial role as bone substitutes and as tissue-engineered scaffolds in bone regenerative therapy. The matrices provided mechanical support for the developing tissue and enhanced tissue formation by releasing active agent in controlled manner. Chitosan was employed to enhance hydrophilicity and biocompatibility of the PCL matrices. PDGF-BB was incorporated into PCL-chitosan matrices to induce enhanced bone regeneration efficacy. PCL-chitosan matrices retained a porous structure with a 100-200 $\mu$m pore diameter that was suitable for cellular migration and osteoid ingrowth. $NaHCO_3$ as a porogen was incorporated 5% ratio to polymer weight to form highly porous scaffolds. PDGF-BB was released from PCL-chitosan matrices maintaining therapeutic concentration for 4 week. High osteoblasts attachment level and proliferation was observed from PCL-chitosan matrices. Scanning electron microscopic examination indicated that cultured osteoblasts showed round form and spread pseudopods after 1 day and showed broad cytoplasmic extension after 14 days. PCL-chitosan matrices promoted bone regeneration and PDGF-BB loaded matrices obtained enhanced bone formation in rat calvarial defect. These results suggested that the PDGF-BB releasing PCL-chitosan porous matrices may be potentially used as tissue engineering scaffolds or bone substitutes with high bone regenerative efficacy.

Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly($\varepsilon$-caprolactone) Macromer and Acrylic Acid

  • Zhao, Sanping;Cao, Mengjie;Wu, Jun;Xu, Weilin
    • Macromolecular Research
    • /
    • 제17권12호
    • /
    • pp.1025-1031
    • /
    • 2009
  • Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly($\varepsilon$-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased. In vitro hydrolytic degradation in the buffer solution (pH 7.4, $37^{\circ}C$), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. The in vitro release profiles of bovine serum albumin (BSA) in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.

Fetal 신장 세포 이식을 통한 신장 구조의 형성

  • 김상수;박흥재;한정호;최차용;김병수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.307-309
    • /
    • 2003
  • 본 연구에서는 신장세포를 이용하여 신장을 재생하는 조직공학적인 신장 재생방법을 개발하기 위해 신장세포를 생분해성 고분자인 PGA 스캐폴드에 부착시켜 루이스 래트의 신장에 이식하였고, 4주 후에 사구체와 세뇨관 유사 구조의 형성을 확인하였다. 앞으로 형성된 신장조직이 이식된 세포로부터 재생된 것인지에 대한 추가적인 확인실험이 필요하다.

  • PDF