• Title/Summary/Keyword: biodegradable

Search Result 1,269, Processing Time 0.026 seconds

Degradation of Polyvinyl Alcohol in Dye-Processing Wastewater by Agar-Acrylamide Microbial Immobilization Method (한천-아크릴아마이드 미생물 고정화법에 의한 폐수 중 폴리비닐알콜의 분해)

  • 김재훈;김정목조무환
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.241-248
    • /
    • 1995
  • For the treatment of poorly biodegradable polyvinyl alcohol(PVA) in dye-processing wastewater, immobilized microbial beads were prepared by uslng agar-acrylamide method. PVA removal efficiency for the synthetic wastewater was 85% at the PVA volume loading rate of $3.1g/\ell$.day. In case of real desizing wastewater, PVA removal efficiency was 81.3% at the PVA volume loading rate of $3.25g/\ell$.day. In observation of cross section of immobilized bead passed 5 months with diameter of 2.4mm, the growth of cell was limited by the resistance of substrate and oxygen transfer for the inners region of more than 48% of bead radius from the surface. It was estimated that 70% of total removed PVA was degraded by the immobilized cells in the continuous immobilized reactor. Substrate utilization rate in the suspended reactor was decreased with increasing dilution rates above 0.083 hr-1, but that in the immobilized reactor was increased with increasing dilution rates up to 0.125hr-1. The substrate removal efficiency of immobilized reactor was much superior to that of suspended reactor with increasing dilution rates. Saturation constant of substrate utilization rate equation, Ks was $6.6 g PVA/\ell$, and maximum specific substrate utilization. k was 0.175g PVA/g cell.hr

  • PDF

Flux of Volatile Organic Compounds from Wastewater Treatment Plant (하수처리장에서 휘발성유기화합물의 FLUX)

  • Kim, Jong O;Chang, Daniel P.Y.;Lee, Woo Bum
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.91-101
    • /
    • 2000
  • The emission sources of volatile organic compounds (VOCs) are wastewater treatment plants. sanitary landfills, automobile industries, and so on. The VOCs are harmful to human beings because of their toxicity and carcinogenicity, and cause the serious air pollution problem producing ozone ($O_3$) as a result of photochemical reaction. To investigate the emission of VOCs from wastewater treatment plant, aeration basins at the City of Los Angeles' Hyperion Treatment Plant were selected and measured flux was compared with calculated flux. For compounds commonly associated with wastewater (DCM, TCM, PCE, UM, DCB, UND) and not expected in vehicle exhaust or ambient air coming off the ocean, concentrations immediately downwind of the aeration basins were a factor of ten or higher than those measured in the upwind air. The airborne flux of less degradable or non-biodegradable compounds, e.g., DCE, DCM, TCA, DCA, TCM, PCE, DCB, through an imaginary plane at the downwind side of the aeration basins was in agreement with the estimated flux from measured liquid phase concentrations. Henry's constant. aeration rate, and an assumption of bubble saturation. For several compounds (PCE, DCE, TCA), the ratio (measured flux/calculated flux) is almost unity.

  • PDF

Synthesis and Characterization of Poly(ethylene glycol) Grafted Polysuccinimide (폴리(에틸렌 글리콜)이 결합된 Polysuccinimide의 합성과 특성)

  • Lim, Nak-Hyun;Lee, Ha-Young;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • Poly(amino acid) derivatives have been widely investigated as a drug carrier in drug delivery system. Particularly,polysuccinimide (PSI) is one of the most promising drug carriers since it possesses suitable physicochemical characteristics for development of macromolecular prodrugs, due to biocompatibility and biodegradability. In this study, we deal with the synthesis of polyaspartamide having various functional groups such as methoxy-poly(ethylene glycol) (MPEG) via ring closing of PSI. PSI was synthesized by polyonensation polymerization of spartic acid. The variety of average molecular weight was confirmed with reacion time and catalyst content to observe the optimum condition of synthesis. MPEG, hydrophilic chain, was bonded to fabricate polymeric micell composed of hydrophilic and hydrophobic polymer. All materials were characterized by 1H-NMR, FT-IR and GPC. In addition, the formation of nanoparticle micelle as drug carrier were also examined. Micelle size was measured by ELS and AFM. The functionalized polysparamide formed nanoparticle micelle whose size ranged from 90 to 130 nm. In conclusion, we prepared polyaspartamide functionalized with PEG examined the possibility as drug carriers.

Characteristics of BCNU-loaded PLGA Wafers (BCNU를 함유한 생분해성 PLGA 웨이퍼의 특성분석)

  • 안태군;강희정;이진수;성하수;정제교
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.691-700
    • /
    • 2002
  • Interstitial therapy using biodegradable polymeric device loaded with anticancer agent can deliver the drug to the tumor site at high concentration, resulting in an increase of therapeutic efficacy. 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is most commonly used as chemotherapeutic agent for brain tumors. The design of implantable device is regarded as an important factor lot the efficient delivery of antitumor agent to targeting site. In order to control the release profile of drug, the release pattern of BCNU with the changes of various dimension and additives was investigated. The PLGA wafers containing 3.85, 10, 20 and 30% of BCNU were prepared in various shape (diameter of 3, 5 and 10 mm, thickness of 0.5, 1 and 2 mm) by direct compression method. In vitro drug release profile of BCNU-loaded PLGA wafers could be controlled by changing the dimension of wafers such as initial drug content, weight, diameter, thickness, volume and surface area of wafers, as well as PLGA molecular weight and additives. Drug release from BCNU-loaded PLGA wafers was facilitated with an increase of BCNU-loading amount or presence of poly(N-vinylpyrrolidone)(PVP) or sodium chloride (NaCl). The effects of various geometric factors and additives on the BCNU release pattern were confirmed by the investigation of mass loss and morphology of BCNU-loaded PLGA wafers.

The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration (조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구)

  • So, Jeong-Won;Jang, Ji-Wook;Kim, Soon-Hee;Choi, Jin-Hee;Rhee, John-M.;Min, Byung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.516-522
    • /
    • 2008
  • Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly (L-lactide-co-glycolide) (PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with $180{\sim}250{\mu}m$ pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Insulation Properties and Evaluation of Diglycerol Ester Synthesized by Solid Acid Catalysts (고체산 촉매를 이용해 합성한 diglycerol ester의 전기절연 특성 및 평가)

  • Gwon, Miseong;Baek, Jae Ho;Kim, Myung Hwan;Park, Dae-Won;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.254-261
    • /
    • 2014
  • The transformer is a static electrical device that transfers energy by inductive coupling. Then, heat is occurred at coils, inner transformer was filled with insulating oils for cooling and insulation. Although mineral oil as insulating oil has been widely used, it does not meet health and current environmental laws because it is not biodegradable. Therefore, in this study, the diglycerol ester was synthesized with diglycerol and fatty acids (oleic acid and caprylic acid) over various catalysts for insulating oil having biodegradability, high flash points and low pour points. The sulfated zirconia ($SO_4{^{2-}}/ZrO_2$) catalyst prepared at different calcination temperature shows the highest conversion of fatty acids at $600^{\circ}C$ due to crystallinity and high density of acid sites per surface area. When the molar ratio of oleic acid and caprylic acid is 1:3, the diglycerol ester shows superior insulation properties that are the flash point of $306^{\circ}C$ and pour point of $-50^{\circ}C$. The insulation properties of synthesized diglycerol ester shows the pour point of $-50^{\circ}C$ and the flash point of over $300^{\circ}C$. Therefore, diglycerol ester is superior to the vegetable oils in insulation properties.

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

Influence of Controlled-release Fertilizer Levels on Rice Growth, Weed Control and Nitrogen Efficiency in Paper Mulching Transplanting (벼 종이멀칭이앙 시 완효성비료 수준이 벼 생육, 잡초방제 및 질소효율에 미치는 영향)

  • Jeon, Weon-Tai;Yang, Won-Ha;Roh, Sug-Won;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.345-350
    • /
    • 2006
  • Recently we have interest on rice products developed by environment-friendly management. The technology of paper mulching was practised without herbicide in machine transplanting cultivation of paddy. A field experiment was conducted on Gangseo series (coarse loamy, mixed, nonacid, mesic family of Aquic Fluventic Eutrochrepts) at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Republic of Korea in 2004. This experiment was carried out to evaluate rice growth, weed control and nitrogen efficiency by the different controlled-release fertilizer levels in paper mulching transplanting. Treatments consisted of conventional fertilization, controlled-release fertilizer (100%, 80%, 60%) compared with nitrogen amount ($110kg\;ha^{-1}$) of conventional fertilization and no nitrogen plot. Mulching paper consisted of recycled paper which was coated with biodegradable plastics. There were no differences between conventional rice transplanting and paper mulching on missing hills. Weed occurrence and control were diverse and low as fertilizer amount increased. Plant height and tiller number per hill increased as fertilizer amount decreased. There were no difference between controlled-release fertilizer 80% and conventional fertilization plot on rice growth traits. Leaf color and $NH_4{^+}-N$ in soil had similar trends. There was no difference in yield between controlled-release fertilizer 80% and conventional fertilization plot. Agronomic nitrogen-use efficiency was high as fertilizer amount decreased. Therefore, these results suggested controlled-release fertilizer 80% should be optimum amount under paper mulching transplanting of rice considering weed control, rice growth and nitrogen efficiency.

Changes of Soil Redox Potential, Weed Control and Rice Growth in Paddy on Paper Mulching Transplanting by Organic Matter Application (종이멀칭 이앙재배 시 유기물원에 따른 토양산화환원전위, 잡초방제 및 벼 생육특성 변화)

  • Jeon, Weon-Tai;Yang, Won-Ha;Roh, Sug-Won;Kim, Min-Tae;Seong, Ki-Yeong;Lee, Jong-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.495-500
    • /
    • 2007
  • Recently we are interest in organic farming of rice. The technology of paper mulching was practised without herbicide in machine transplanting cultivation of paddy. A field experiment was conducted in Gangseo series (coarse loamy, mixed, nonacid, mesic family of Aquic Fluventic Eutrochrepts) at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Republic of Korea in 2004. This experiment was carried out to evaluate soil redox potential, weed control and rice growth by the different organic matter in paper mulching transplanting. Compost, rice straw and soiling rye were incorporated as organic matter. The nitrogen amount of controlled-release fertilizer (CRF) plot was 80% compared with nitrogen amount ($110kg\;ha^{-1}$) of conventional fertilization. Mulching paper consisted of recycled paper which was coated with biodegradable plastics. There were no difference between conventional rice transplanting and paper mulching on missing hills after organic matter application. Weed control were the highest at added soiling rye plot. The redox potential of soil was the lowest in rice straw + CRF 80% plot at tillering stage. The $NH_4{^+}-N$ in soil was the highest at soiling rye + CRF 80% tillering stage. There was no difference in yield between soiling rye + CRF 80%, compost + CRF 80% and conventional fertilization plot.