• 제목/요약/키워드: biochar

검색결과 179건 처리시간 0.024초

단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화 (Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed)

  • 고일하;김정은;김지숙;박미선;강대문;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.87-100
    • /
    • 2016
  • Biochar, which has high alkalinity, has widely studied for amendment of soil that contaminated with heavy metals. The aim of this study is assessment of amendment for arsenic and heavy metals contaminated acidic agricultural soil using biochar that derived from buffalo weed (A. trifida L. var. trifida). Pot experiments were carried out including analysis of soil solution, contaminants fractionation, soil chemical properties and plant (lettuce) uptake rate. Arsenic and heavy metals concentrations in soil solution showed relatively low in biochar added experiments when compared to the control. In the heavy metals fractionation in soil showed decrease of exchangeable fraction and increase of carbonates fraction; however, arsenic fractionations showed constant. Soil chemical properties indicated that biochar could induce recovery of soil quality for plant growth in terms of soil alkalinity. However, phosphate concentration in biochar added soil decreased due to Ca-P precipitation by exchangeable calcium from biochar. Arsenic and heavy metals uptake rate of plant in the amended experiment decreased to 50% when compared to the control. Therefore biochar derived from buffalo weed can be used as amendment material for agricultural soil contaminated with arsenic and heavy metals. Precipitation of As-Ca and metal-carbonates are major mechanisms for soil amendment using char.

Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar

  • Choi, Ik-Won;Kim, Jae-Hoon;Lee, Soo-Hyung;Lee, Jae-Kwan;Seo, Dong-Cheol;Cho, Ju-Sik
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.489-494
    • /
    • 2016
  • Carbon-based sorbents such as biochar and activated carbon have been proven to be cost-effective in removing pollutants containing heavy metals from wastewater. The aim of this study was using batch experiment to evaluate the adsorption characteristics of heavy metals in single-metal conditions onto reed biochar for treating wastewater containing heavy metals. The removal rates of heavy metals were in the order of Pb > $Cu{\fallingdotseq}Cd{\fallingdotseq}Zn$, showing the adsorption efficiency of Pb was higher than the other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained from adsorption of Pb on reed biochar. For reed biochar, the Langmuir model provided a slightly better fit than the Freundlich model. Lead was observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The main functional groups of reed biochar were aromatic carbons. Overall, the results suggested that reed biochar could be useful adsorbent for treating wastewater containing Pb.

인공 음식물 혼합 폐기물 바이오차의 토양 중금속 흡착 가능성을 위한 특성 분석 (The Characteristics of the Biochar with the Synthetic Food Waste and Wood Waste for Soil Contaminated with Heavy Metals)

  • 백예슬;이재영;박성규;배선영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2014
  • When processing the biomass by Hydrothermal carbonization (HTC), a slow pyrolysis process, it produces bio-gas, biooil, and biochar. Among these end products, biochar is known for isolating or storing carbon and being used as a soil amendment. In this study, the characteristics of biochar generated by HTC at $250^{\circ}C$ for 1 hour, 2 hours, 3 hours, and 20 hours with synthetic food wastes and wood wastes were analyzed for potential uses in soil contaminated with heavy metals. The yield of biochar (weight %) increased when the ratio of wood wastes increased and showed a decreasing tendency as reaction time increased. Elemental analysis of biochar based on various conditions showed a maximum of 70% carbon (C) content. The carbon content showed an increasing tendency with the increase of wood wastes. Iodine adsorption test was peformed to determine the optimum reaction condition, which was 15% wood waste for mixing ratio and 2 hours for reaction time. Using biochar generated at the optimum condition, its capability of adsorbing heavy metals (Cd, Cu, Pb, Zn, Ni) was evaluated. It was concluded that lead (Pb) was removed efficiently while zinc (Zn) and nickel (Ni) were hardly adsorbed by biochar.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2019년도 정기학술대회 발표논문집
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Review of the use of activated biochar for energy and environmental applications

  • Lee, Hyung Won;Kim, Young-Min;Kim, Seungdo;Ryu, Changkook;Park, Sung Hoon;Park, Young-Kwon
    • Carbon letters
    • /
    • 제26권
    • /
    • pp.1-10
    • /
    • 2018
  • Biochar obtained from the thermal conversion of biomass has high potential as a substitute material for activated carbon and other carbon-based materials because it is economical, environmentally friendly, and carbon-neutral. The physicochemical properties of biochar can also be controlled by a range of activation methods such as physical, chemical, and hydrothermal treatments. Activated biochar can be used as a catalyst for the catalytic pyrolysis of a biomass and as an absorbent for the removal of heavy metal ions and atmospheric pollutants. The applications of biochar are also expanding not only as a key component in producing energy storage materials, such as supercapacitors, lithium ion batteries, and fuel cells, but also in carbon capture and storage. This paper reviews the recent progress on the activation of biochar and its diverse present and future applications.

Rice Yield Response to Biochar Application Under Different Water Managements Practices

  • Jung, Won-Kyo
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.16-19
    • /
    • 2012
  • Increasing rice grain yield is critical for feeding rapid increasing of Asian population. However, global warming effect may be negative for sustainable rice production. Therefore it is essential to develop technologies not only for increasing grain yield but also for reducing global warming effect. Biochar, which is carbonized biomass, has a great potential of carbon sequestration and soil quality improvement, which can contribute grain yield increasing. In this study, rice yield responses to biochar application on the rice cropping system were evaluated with field experiments under different water management practices at the research farm of the University of Missouri-Columbia Delta Research Center, Portageville, MO. Biochar (i.e., $4Mg\;ha^{-1}$) was produced using field scale pyrolyzer and incorporated into the field 4 months prior to planting. Rice was grown under three different water management practices. Result showed that no significant yield difference was found in the biochar application plots compared to rice hull and control plots from the 2 years field study at the very fertile soil. However, rainfed management results in severe reduction of yield. Research concludes that the biochar application does not significantly influence on rice yield increasing especially for very fertile soils.

The Cell Viability on Kelp and Fir Biochar and the Effect on the Field Cultivation of Corn

  • Boakye, Patrick;Lee, Chul Woo;Lee, Won Mook;Woo, Seung Han
    • 청정기술
    • /
    • 제22권1호
    • /
    • pp.29-34
    • /
    • 2016
  • Field cultivation of corn and microbial cell viability tests using Pseudomonas putida K-5 were performed to assess the toxic effect of kelp seaweed biochar (KBC) and fir wood biochar (FBC) produced by pyrolysis. After 63 days growth, FBC increased corn growth by 4.9% without fertilizer and by 7.6% with fertilizer, while KBC decreased it by 20.2% without fertilizer and by 27.9% with fertilizer. Physico-chemical characterization of the biochars such as ICP, CHON, and proximate analyses showed that KBC contained large amount of metals and ashes which could be responsible for its inhibition to corn growth. Upon exposure of K-5 cells for 1 h to biochar extracts, the cell viability in KBC extracts was 48.2% and quite lower than that (78.6%) in FBC. Washed KBC biochar with water at 1:10 w/v % increased the cell viability to 54.0%. The results indicated that seaweed biochar may be careful to be used for plant growing additives due to its high concentrations of metals and ashes. This toxic effect could be reduced by proper washing method with water.

영가철 개질 바이오차를 이용한 지하수의 질산성 질소 제거 (Removal of Nitrate from Groundwater using Zero-valent Iron-modified Biochar)

  • 한은영;김혜빈;김종국;신동훈;백기태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.28-34
    • /
    • 2020
  • Nitrate released from chemical fertilizer, animal wastes, and synthetic detergents can cause methemoglobinemia to infants, thus the standard in drinking water is set to 10 mg/L as World Health Organization recommended. In this study, zero-valent iron-modified rice straw biochar was used to reduce and remove nitrate in the aqueous phase. The rice straw biochar was prepared by pyrolyzing the biomass at 700℃ for 3 hours, and the biochar was modified using 1 M Fe(III), and the Fe(III) on the biochar was reduced to zero-valent iron using sodium borohydride. The modified biochar removed nitrate effectively, which removed more than 91% of nitrate. For the synthetic groundwater, the nitrate removal was lowered to 82% due to the presence of other anions.

바이오차 시용이 시설재배 멜론의 토양 환경 및 생육에 미치는 영향 (Effects of Biochar Application on Soil Environment and Melon Growth in Greenhouse)

  • 김은혜;윤건식;정금재;이규회;전유민;윤철구;김주형;이상민
    • 한국유기농업학회지
    • /
    • 제32권1호
    • /
    • pp.75-90
    • /
    • 2024
  • 바이오차란 바이오매스를 산소가 제한된 조건에서 열분해하여 만든 탄소함량이 높은 고형물로서 토양환경 개선 효과로 탄소중립을 위한 친환경 토양개량제로 주목받고 있다. 본 실험에서는 멜론 시설재배지 바이오차의 시용량별 토양 이화학성 및 미생물 군집의 변화를 평가 하였고 이에 따른 멜론의 생육 특성 및 수량성을 조사하였다. 토양의 물리성은 바이오차 시용량이 증가함에 따라 용적밀도는 감소하고 공극률이 증가하여 토양의 통기성이 개선되는 효과가 있었다. 토양의 화학성은 바이오차 시용량이 증가할수록 pH가 증가하고 유기물 및 유효인산 함량이 증가하는 경향이었다. 멜론의 생육은 무처리 대비 바이오차 10,000 kg/ha 처리까지 시용량이 증가할수록 멜론의 만장, 엽장, 엽폭이 증가하는 경향이었다. 또한 멜론의 생산량도 시용량에 따라 증가하여 바이오차 10,000 kg/ha 처리에서 무처리 대비 13~16% 높았다. 바이오차 시용에 따른 토양 미생물 군집의 차이를 비교해 본 결과, 우점 유익균의 비율이 증가하는 결과를 보였다. 본 연구는 멜론 시설재배지 바이오차의 처리가 토양의 이화학적 특성 및 미생물군집 개선의 결과를 나타내며 효과적인 토양개량제로서의 가능성을 보여주었다.

KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향 (Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar)

  • 김희선;윤석인;안난희;신중두
    • 한국환경농학회지
    • /
    • 제39권3호
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.