• Title/Summary/Keyword: biocatalyst

Search Result 149, Processing Time 0.023 seconds

Isolation and Identification of Aldehyde Producing Methanol Utilizing Yeast (메탄올 자화성 효모의 분리, 동정 및 Aldehyde 생산)

  • 윤병대;김희식;권태종;양지원;권기석;이현선;안종석;민태익
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.630-636
    • /
    • 1992
  • Hansenula nonfermentans KYP-l was selected and identified from 19 methanol utilizing yeasts isolated from soil samples by the enrichment culture technique. This strain showed a high cell concentration and a high aldehyde production. Aldehyde production was carried out in a resting cell system using methanol utilizing yeast as a biocatalyst. The molar yield of acetaldehyde was the highest among the aldehyde investigated, and the maximum amount of aldehyde was produced by cells obtained from a 40 hours' culture.

  • PDF

Screening and Taxonomic Charactrization of D-Amino Acid Aminotransferase-producing Thermophiles (D-Amino Acid Aminotransferase 활성보유 고온성미생물의 탐색 및 분류학적 특성 연구)

  • 곽미선;이승구;정상철;서승현;이재흥;전영중;김영호;성문희
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.184-190
    • /
    • 1999
  • To acquire an industrially useful biocatalyst for the enzymatic synthesis and production of various D-amino acid aminotransferase (D-AAT) activity. The enzyme activity was found from 110 strains of isolated thermophiles revealing its wide occurrence in thermophiles. Enzyme activity and thermal stability of the D-AAT producers were compared. Finally we have selected four thermophiles as producers of potent biocatalysts for the D-amino acid production; two thermophiles, Bacillus sp. Lk-1 and LK-2, having higher specific activity and two thermophiles, B. stearothermophilus KL-01 and Bacillus sp. KLS-01, having higher thermal stability than the D-AAT producers. Taxonomic and physiological characteristics of the four isolated thermophiles were described herein.

  • PDF

Isolation and Characterization of Enterobacter sp. Producing Galacto-oligosaccharides

  • YANG, JI-WON;HYUN-JAE SHIN;SANG-PIL YEOM;BYUNG-DAE YUN;MIN-HONG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.343-348
    • /
    • 1994
  • Enterobacter sp. producing -$\beta$-galactosidase with high transgalactosylation activity was isolated from dairy wastewater. The isolate had common biochemical features to E. aerogenes and E. cloacae. Enzyme production increased as the cell mass increased with optimum enzyme activity of 0.21 Unit/mg-protein (o-nitro-phenyl-$\beta$ -D-galactoside (ONPG) as substrate) until 8 hr of culture. Whole cells permeabilized by toluene were used to produce galacto-oligosaccharide. Optimum toluene concentration, temperature and pH for -$\beta$-galactosidase activity of permeabilized whole cells were 10% (v/v), $50^{\circ}C$ and 6.0, respectively. A maximum of 38% (w/w) of galacto-oligosaccharide was obtained with lactose concentration of 20% (w/w) at $40^\{\circ}C$ and pH 6.0.

  • PDF

Optimization of Reduction of 3-chloro-4-fluoropropiophenone by Whole Cells of Saccharomyces cerevisiae (Saccharomyces cerevisiae를 이용한 3-chloro-4-fluoropropiophenone 환원 반응 최적화)

  • Lee, Hae-Ryong;Jeong, Min;Yoo, Ik-Keun;Hong, Soon-Ho
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.569-571
    • /
    • 2011
  • Reduction of 3-chloro-4-fluoropropiophenone by Saccharomyces cerevisiae as a whole cell biocatalyst was optimized. Effects of glucose, S. cerevisiae and 3-chloro-4-fluoropropiophenone concentrations on conversion of reduction reaction was investigated. Optimum concentrations of glucose, S. cerevisiae and 3-chloro-4-fluoropropiophenone were 100, 40 and 20 g/L, respectively. At optimum condition, 100% of conversion was achieved in 12 hours of reaction.

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

Improved Performance of a Microbial Fuel Cell with Polypyrrole/Carbon Black Composite Coated Carbon Paper Anodes

  • Yuan, Yong;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1344-1348
    • /
    • 2008
  • A microbial fuel cell (MFC) has been regarded as noble clean energy technology that can directly convert biomass to electricity. However, its low power density is a main limitation to be used as a new energy source. To overcome this limitation, we focused on the anode improvement in a mediator-type MFC using P. vulgaris as a biocatalyst. Fuel cell performance increased when the anode was coated with carbon black or polypyrrole. The best performance was observed when polypyrrole/carbon black (Ppy/CB) composite material was coated on a carbon paper electrode. Our obtained value of 452 mW $m^{-2}$ is the highest value among the reported ones for the similar system. The effects of amount of Ppy/CB, mediator concentration, and amount of P. vulgaris have also been examined.

Study for Improving Properties of Squid Viscera Oil Using Transesterification and Adsorption (에스테르 교환반응과 흡착제를 이용한 오징어 내장유의 품질 개선)

  • Roh, Myong-Kyun;Uddin, Salim;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.257-262
    • /
    • 2007
  • Squid viscera oil was investigated by pretreatment method for enhancing the commercial value. Transeterification was performed to reduce rancidity of the oil, off-flavor was removed by using activated carbon adsorption. Analysis using ATD (Automatic Thermal Desorber) and GC/MG shows the efficacy of off-flavor removement. The rates of Transesterification employing inorganic catalyst and biocatalyst were tested, respectively. With stepwise addition of ethanol, the most efficiency of the reaction was achieved by inorganic catalyst. The efficiency of the reaction was estimated by acid value corresponding to rancidity of reaction product.

  • PDF

Permeabilization of Ochrobactrum anthropi SY509 Cells with Organic Solvents for Whole Cell Biocatalyst

  • Park, Kyung-Oh;Song, Seung-Hoon;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.147-150
    • /
    • 2004
  • Permeabilization is known to overcome cell membrane barriers of whole cell biocatalysts. The use of organic solvents is advantageous in terms of cost, simplicity, and efficiency. In this study, Ochrobactrum anthropi SY509 was permeabilized with various organic solvents. Treatment with organic solvents resulted in lower permeability barriers due to falling out lipids of the cell membrane. Therefore, permeabilized cells showed higher enzyme activity with no cell viability. Among various organic solvents, 0.5% (v/v) chloroform was selected as the most efficient permeabilizing reagent. Changes in the cell membrane structure were observe d and the residual amounts of phospholipids of the cell membrane were measured to investigate the mechanism of the improved permeability.

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3726-3729
    • /
    • 2011
  • Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

  • Kaoplod, Watcharasorn;Chaijak, Pimprapa
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.122-125
    • /
    • 2022
  • The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.