• Title/Summary/Keyword: bio-sulfur

Search Result 82, Processing Time 0.031 seconds

Effects of Using Bio-Sulfur on Open Field Citrus Melanose (Diaporthe citri) and Panonychus citri (바이오 황의 노지 감귤 검은점무늬병 및 귤응애에 대한 효과)

  • Oh, Myung-Hyup;Park, Won-Pyo;Hyun, Hae-Nam
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.997-1002
    • /
    • 2020
  • In this study, we investigated the effects of the eco-friendly chemical bio-sulfur, on the citrus melanose-causing pathogen, Diaporthe citri, and on the pest, Panonychus citri. In an open field experiment with a plot-scale application of the chemicals: Mancozeb, lime sulfur, lime sulfur + machine oil, and bio-sulfur, the control group showed 70.6% disease severity compared with 10.3% for the Mancozeb-treated group. Among the eco-friendly treatments, disease severity was the lowest for the group treated with lime sulfur + machine oil (32.2%) and was 53.9%, 58.8%, and 58.1% following treatment with lime sulfur, and bio-sulfur diluted 500 and 1000 times, respectively. The proportion of diseased fruit showed similar results, suggesting that bio-sulfur is an effective alternative to lime sulfur. Three days after treatment acaricidal effects on P. citri showed a 197.6% control survival rate whereas the machine oil, and bio-sulfur diluted 500 and 1000 times treatments showed rates of 2.9%, 5.8%, and 9.0%, respectively. After three days, the control value for bio-sulfur diluted 1000 times was 73.2% compared with the values for the machine oil (96.4%) and bio-sulfur diluted 500 times (94.6%) treatments. Therefore, we suggest that additional research is needed on the combined application of bio-sulfur and oils to enhance the additive control effect on citrus melanose and Panonychus citri.

Bio-Sulfur Pre-Treatment Suppresses Anthracnose on Cucumber Leaves Inoculated with Colletotrichum orbiculare

  • Ko, Eun Ju;Shin, Yong Ho;Hyun, He Nam;Song, Hyo Soon;Hong, Jeum Kyu;Jeun, Yong Chull
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.308-318
    • /
    • 2019
  • Bio-sulfur can be produced in the process of desulfurization from a landfill and collected by some microorganism such as Thiobacillus sp. as a sulfur element. In order to investigate practical use of bio-sulfur as an agent for controlling plant disease, in vitro antifungal activity of bio-sulfur was tested against Colletotrichum orbiculare known to cause cucumber anthracnose. Efficacy of bio-sulfur for suppressing anthracnose disease was also evaluated in vivo using cucumber leaves. Mycelial growth of C. orbiculare on medium containing bio-sulfur was inhibited. Disease severity of cucumber leaves pre-treated with bio-sulfur was significantly decreased compared to that of untreated ones. To illustrate how bio-sulfur could suppress anthracnose disease, structures of cucumber leaves infected with C. orbiculare were observed under a fluorescent microscope and a scanning electron microscope (SEM). Cucumber leaves pre-treated with bio-sulfur showed a low rate of appressorium formation whereas untreated ones showed abundant appressoria. Shrunk fungal hyphae were mostly observed on bio-sulfur-pretreated leaves by SEM. Similar results were observed on leaves pre-treated with a commercial fungicide Benomyl(R). These results suggest that inhibition of appressorium formation of C. orbiculare by bio-sulfur may contribute to its suppression of cucumber anthracnose.

Suppression of Melanose Caused by Diaporthe citri on Citrus Leaves Pretreated with Bio-sulfur

  • Shin, Yong Ho;Ko, Eun Ju;Kim, Su Jeong;Hyun, He Nam;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.417-424
    • /
    • 2019
  • Melanose, caused by Diaporthe citri, is one of severe diseases in citrus, a major economic resource in Jeju island. To reduce the usage amount of organic synthetic fungicide, bio-sulfur was tested as an alternative chemical to control citrus melanose in the present study. Direct antifungal activity of bio-sulfur against D. citri was determined through in vitro experiment using artificial nutrient media. Disease severity of melanose on bio-sulfur pretreated citrus leaves was lower than that on untreated ones. To illustrate the mechanism of disease suppression by bio-sulfur, infection structures were observed with a fluorescent microscope and a scanning electron microscope. In fluorescent microscopic observation, most conidia rarely germinated. In addition, hyphal growth on leaves pretreated with bio-sulfur was inhibited compared to that on untreated ones. In scanning electron microscope images of bio-sulfur pretreated leaves, surfaces of most conidia were shrunk while hyphae were morphologically changed and frequently branched. Such microscopic observations were also found for leaves pretreated with a commercial fungicide Dithianon. These results suggest that bio-sulfur may be used to control citrus melanose as an environment friendly alternative to organic synthetic fungicides

Suppressive Effects of Bio-Sulfur on Citrus Scab (바이오 황을 이용한 감귤 더뎅이병 발병 억제 효과)

  • Oh, Myung-Hyup;Hyun, Jae-Wook;Park, Won-Pyo;Hyun, Hae-Nam
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.223-233
    • /
    • 2020
  • The aim of the present study was to investigate the suppressive effects of the bio-sulfur used by eco-friendly farms on the outbreak of citrus scab. To evaluate the inhibiting effect of bio-sulfur on citrus scab germ tube growth, the citrus scab pathogen Elsinoe fawcettiiwas cultured in PDB and agar media, and germ tube growth was observed after bio-sulfur treatment. At both 40 and 88 h after inoculation, germ tube formation was inhibited by 500-, 1000-, and 2000-fold diluted bio-sulfur, and at dilutions above 4000-fold, germ tube formation was observed, although growth was still inhibited, when compared to untreated cultures. Meanwhile, the occurrence of citrus scab on spring-flush leaves in the field was 40.3% in the untreated control and 5.3, 10.3, 12.3, 15.3, and 24.0% when treated with imibenconazole, 2-4 and 6-6 lime-Bordeaux mixtures, which are also used by eco-friendly farms, 500-fold diluted bio-sulfur, lime sulfur, and 1000-fold diluted bio-sulfur, respectively. The occurrence of citrus scab on citrus fruit was 79.3% in the untreated control and 4.0, 33.8, 42.0, 43.3, 44.8, and 78.0% when treated with imibenconazole, 2-4 lime-Bordeaux mixture, 6-6 lime-Bordeaux mixture, 500-fold diluted bio-sulfur, lime sulfur, and 1000-fold diluted bio-sulfur, respectively. Because citrus scab can infect citrus leaves as early as May, as the spring flush begins, preventative control should be implemented by mid- to late-April, thereby increase disease control and reducing both labor and farming costs.

Computational Fluid Dynamics Analysis of the Pretreatment System for Livestock BIO-GAS MGT Power Generation (바이오가스 마이크로 터빈 발전용 전처리시스템 전산유동해석)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Kim, Jae-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.260-263
    • /
    • 2008
  • KEPCO(Korea Electric Power Corporation) is performing the nation's first biogas-MGT project as an effort to encourage the utilization of wasted biogas which contains useful CH4. The goals of this project are to develop the Pretreatment system of Livestock bio-gas and set up the biogas-MGT co-generation system. The project will not only utilze flared biogas as precious energy but also improve the economics of the plant a lot. The pretreatment system mainly consists of sulfur removal tower, biogas compressor and many filtering systems. A computational fluid dynamics study in the bio gas sulfur removal tower and sulfur absorption filter was carried out. Understanding of the flow in the sulfur removal tower and sulfur adsorption filter obtained by this study can be used to identify the problems in the sulfur removal tower and to improve the sulfur removal efficiency of the sulfur removal tower. Resistance material modeling is used to simulate the sulfur adsorption filter, and the resistance coefficient was adjusted to reflect the experimental pressure loss value. And the pressure loss change with the flowrate is predicted

  • PDF

Application of the Microbial Process for Hydrogen Sulfide Removal and Bio-Sulfur Production from Landfill Gas (미생물 공법에 의한 매립가스 황화수소 제거 및 바이오황 생산)

  • Khim, Young-Min;Song, Hyo-Soon;Ahn, Hyoseong;Chun, Seung-Kyu
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2020
  • Operational testing of the THIOPAQ® facility that removes H2S from landfill gas was performed for 746 days. The average H2S removal efficiency was 99.4%, and the input quantities of air, NaOH, and nutrients per sulfur load were 13.1 ㎥/ton, 1.5 ㎥/ton, and 28.7 L/ton, respectively. The purity of the bio-sulfur produced from the facility was 94.8%, with 3.3% impurities, except for moisture. X-ray photoelectron spectroscopy showed that the compositional contents of amino acids and free amino acids of the bio-sulfur surface were 5,308 and 728 mg/kg, respectively. The mean particle size was 3.41 ㎛, which was much smaller than that of chemical sulfur. Based on these results, a high H2S removal rate of more than 97% is feasible, and high value-added bio-sulfur, which is used as a fungicide because of its hydrophilic characteristics and small size, can be obtained at this facility.

Effect of Bio-Sulfur Modified by Slaked Lime on Cement Hydration Properties (소석회에 의해 개질된 바이오 황이 시멘트 수화 특성에 미치는 영향)

  • Woong-Geol Lee;Lae-Bong Han;Sung-Hyun Cho;Pyeong-Su Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.509-516
    • /
    • 2023
  • The use of sulfur(S) in concrete has been variously studied as a way to improve salt resistance in concrete. However, sulfur is a solid material and is difficult to powder, which has disadvantages in its usability as an admixture or mixture for cement and concrete. For these problem, polymers such as dicyclopentadiene have been used to modify sulfur, but this also exists in a sticky state after modifying and does not improve the fundamental problem. So, reforming sulfur with slaked lime and the effect on cement hydration was examined by reforming sulfur with slaked lime, and the following conclusions were obtained. Depending on the reaction conditions, slaked lime modified bio-sulfur exists in a slurry state containing unreacted sulfur, unreacted slaked lime, calcium-sulfur(Ca-S) compounds and water. When slaked lime modified bio-sulfur is used as a cement mixture, salt resistance of concrete with slaked lime modified bio-sulfur is to be superior to that of plain concrete. This is believed to be because structure of cement hydrates with slaked lime modified bio-sulfur is to be more dense to that of plain cement hydrates by the continued presence of ettringite and can be used as a cement mixture in concrete.

Preparation of Carrageenan-based Antimicrobial Films Incorporated With Sulfur Nanoparticles

  • Saedi, Shahab;Shokri, Mastaneh;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.3
    • /
    • pp.125-131
    • /
    • 2020
  • Carrageenan-based functional films were prepared by adding two different types of sulfur nanoparticles (SNP) synthesized from sodium thiosulfate (SNPSTS) and elemental sulfur (SNPES). The films were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), and thermal gravimetric analysis (TGA). Also, film properties such as UV-visible light transmittance, water contact angle (WCA), water vapor permeability (WVP), mechanical properties, and antibacterial activity were evaluated. SNPs were uniformly dispersed in the carrageenan matrix to form flexible films. The addition of SNP significantly increased the film properties such as water vapor barrier and surface hydrophobicity but did not affect the mechanical properties. The carrageenan/SNP composite film showed some antibacterial activity against foodborne pathogenic bacteria, L. monocytogenes and E. coli.

Desulfurization of Dibenzothiophene and Diesel Oil by Metabolically Engineered Escherichia coli

  • Park, Si-Jae;Lee, In-Su;Chang, Yong-Keun;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.578-583
    • /
    • 2003
  • The desulfurization genes (dszABC) were cloned from Gordonia nitida. Nucleotide sequences similarity between the dszABC genes of G. nitida and those of Rhodococcus rhodochrous IGTS8 was 89%. The similarities of deduced amino acids between the two were 86% for DszA, 86% for DszB, and 90% for DszC. The G. nitida dszABC genes were expressed in several different Escherichia coli strains under an inducible trc promoter. Cultivation of these metabolically engineered E. coli strains in the presence of 0.2 mM dibenzothiophene (DBT) allowed the conversion of DBT to 2-hydroxybiphenyl (2-HBP), which is the final metabolite of the sulfur-specific desulfurization pathway. The maximum conversion of DBT to 2-HBP was 16% in 60 h. Recombinant E. coli was applied for the deep desulfurization of diesel oil supplemented into the medium at 5% (v/v). Sulfur content in diesel oil was decreased from 250 mg sulfur/1 to 212.5 mg sulfur/1, resulting in the removal of 15% of sulfur in diesel oil in 60 h.

The Effect of Biodiesel and Ultra Low Sulfur Diesel Fuels on Emissions in 11,000 cc Heavy-Duty Diesel Engine

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.870-876
    • /
    • 2005
  • It seems very difficult to comply with upcoming stringent emission standards in vehicles. To develop low emission engines, better quality of automotive fuels must be achieved. Since sulfur contents in diesel fuels are transformed to sulfate-laden particulate matters as a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. In general, flash point, distillation $90\%$ and cetane index are improved but viscosity can be worse in the process of desulfurization of diesel fuel. Excessive reduction of sulfur may cause to degrade viscosity of fuels and engine performance in fuel injection systems. This research focused on the performance of an 11,000 cc diesel engine and emission characteristics by the introduction of ULSD, bio-diesel and a diesel oxidation catalyst, where the bio-diesel was used to improve viscosity of fuels in fuel injection systems as fuel additives or alternative fuels.