• Title/Summary/Keyword: bio-purification

Search Result 235, Processing Time 0.028 seconds

Purification and Characterization of Beta-Glucosidase from Weissella cibaria 37

  • Lee, Kang Wook;Han, Nam Soo;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1705-1713
    • /
    • 2012
  • A gene encoding ${\beta}$-glucosidase was cloned from Weissella cibaria 37, an isolate from human feces. Sequence analysis showed that the gene could encode a protein of 415 amino acids in length, and the translated amino acid sequence showed homology (34-31%) with glycosyl hydrolase family 1 ${\beta}$-glucosidases. The gene was overexpressed in E. coli BL21(DE3) using pET26b(+) and a 50 kDa protein was overproduced, which matched well with the calculated size of the enzyme, 49,950.87 Da. Recombinant ${\beta}$-glucosidase was purified by using a his-tag affinity column. The purified ${\beta}$-glucosidase had an optimum pH and a temperature of 5.5 and $45^{\circ}C$, respectively. Among the metal ions (5mM concentration), $Ca^{2+}$ slightly increased the activity (108.2%) whereas $Cu^{2+}$ (46.1%) and $Zn^{2+}$ (56.7%) reduced the activity. Among the enzyme inhibitors (1 mM concentration), SDS was the strongest inhibitor (16.9%), followed by pepstatin A (45.2%). The $K_m$ and $V_{max}$ values of purified enzyme were 4.04 mM and 0.92 ${\mu}mol/min$, respectively, when assayed using pNPG (p-nitrophenyl-${\beta}$-D-glucopyranoside) as the substrate. The enzyme liberated reducing sugars from carboxymethyl cellulose (CMC).

Assessment of Korean Paddy Soil Microbial Community Structure by Use of Quantitative Real-time PCR Assays (한국의 논 토양 미생물 다양성 분석을 위한 Quantitative Real-time PCR의 응용)

  • Choe, Myeong-Eun;Lee, In-Jung;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • BACKGROUND: In order to develop effective assessment method for Korean paddy soil microbial community structure, reliable genomic DNA extraction method from paddy soil and quantitative real-time PCR (qRT-PCR) method are needed to establish METHODS AND RESULTS: Out of six conventional soil genomic DNA extraction methods, anion exchange resin purification method was turn to be the most reliable. Various PCR primers for distinguishing five bacterial phylum (${\alpha}$-Proteobacteria, ${\beta}$-Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes), all bacteria, and all fungi were tested. Various qRT-PCR temperature conditions were also tested by repeating experiment. Finally, both genomic DNA extraction and qRT-PCR methods for paddy soil were well established. CONCLUSION: Quantitative real-time PCR (qRT-PCR) method to assess paddy soil microbial community was established.

Real Time Scale Measurement of Inorganic Phosphate Release by Fluorophore Labeled Phosphate Binding Protein (형광단이 붙어 있는 인산결합 단백질에 의한 인산 배출의 실시간 측정)

  • Jeong Yong-Joo
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.935-940
    • /
    • 2005
  • Fluorescence change of coumarin labeled phosphate binding protein (PBP-MDCC) was monitored to measure the amount of released inorganic phosphate ($P_{i}$) during nucleoside triphosphate (NTP) hydrolysis reaction. After purification of PBP-MDCC, fluorescence emission spectra showed that fluorescence responded linearly to $P_{i}$ up to about 0.7 molar ratio of $P_{i}$ to protein. The correlation of fluorescence signal and $P_{i}$ standard was measured to obtain [$P_{i}$] - fluorescence intensity standard curve on the stopped-flow instrument. When T7 bacteriophage helicase, double-stranded DNA unwinding enzyme using dTTP hydrolysis as an energy source, reacted with dTTP, the change of fluorescence was able to be converted to the amount of released $P_{i}$ by the $P_{i}$ standard curve. $P_{i}$ release results showed that single-stranded Ml3 DNA stimulated dTTP hydrolysis reaction several folds by T7 helicase. Instead of end point assay in NTP hydrolysis reaction, real time $P_{i}$-release assay by PBP-MDCC was proven to be very easy and convenient to measure released $P_{i}$.

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

  • Moon, Sung-Hwan;Bae, Daekyeong;Jung, Taek-Hee;Chung, Eun-Bin;Jeong, Young-Hoon;Park, Soon-Jung;Chung, Hyung-Min
    • International Journal of Stem Cells
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.

Purification of Antithrombotic Material from Auricularia auricular-judae Extracts and Its Antithrombotic Activity (목이버섯 추출물로부터 항혈전물질의 정제와 항혈전효과)

  • Park, Young-Seo;Choi, Hyuk-Joon;Choi, Tae Hyun
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.326-334
    • /
    • 2009
  • Blood coagulation and aggregation of platelet are crucial events in the pathogenesis of various ischemic diseases. The substance which can prevent blood coagulation and platelet aggregation was extracted from wood ear mushroom (Auricularia auricular-judae) and its anticoagulation activity was investigated. The dried A. auricular-judae was extracted with 0.1 N NaOH and its supernatant was further extracted with methanol and ethanol followed by $H_{2}O$. The resulting methanol soluble fraction showed significant antithrombotic activity in activated partial thromboplastin time, thrombin time, and prothrombin time assays with values of 100, 124, and 54 sec, respectively. This active substance was purified with DEAE-Sepharose CL6B and Sephacryl 400-HR and was found to be polysaccharide with the average molecular weight of over 150 kDa. This polysaccharide was xyloglucomannan of which the main component was mannose, and its anticoagulant activity was mostly mediated by inhibition of thrombin activity.

Expression of Codon Optimized β2-Adrenergic Receptor in Sf9 Insect Cells for Multianalyte Detection of β-Agonist Residues in Pork

  • Liu, Yuan;Wang, Jian;Liu, Yang;Yang, Liting;Zhu, Xuran;Wang, Wei;Zhang, Jiaxiao;Wei, Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1470-1477
    • /
    • 2019
  • ${\beta}_2$-adrenergic receptor (${\beta}_2-AR$) was expressed efficiently using Bac-to-Bac Baculovirus Expression System in Sf9 cells as a bio-recognition element for multianalyte screening of ${\beta}$-agonist residues in pork. Sf9 cells were selected as the expression system, and codon optimization of wild-type nucleic acid sequence and time-dependent screening of expression conditions were then carried out for enhancing expression level and biological activity. Under optimum conditions of multiplicity of infection (MOI) = 5 and 48 h post transfection, the protein yield was up to 1.23 mg/ml. After purification by chromatographic techniques, the purified recombinant protein was applied to develop a direct competitive enzyme-linked receptor assay (ELRA) and the efficiency and reliability of the assay was determined. The IC50 values of clenbuterol, salbutamol, and ractopamine were 28.36, 50.70, and $59.57{\mu}g/l$, and clenbuterol showed 47.61% and 55.94% cross-reactivities with ractopamine and salbutamol, respectively. The limit of detection (LOD) was $3.2{\mu}g/l$ and the relevant recoveries in pork samples were in the range of 73.0-91.2%, 69.4-84.6%, and 63.7-80.2%, respectively. The results showed that it had better performance compared with other present nonradioactive receptorbased assays, indicating that the genetically modified ${\beta}_2-AR$ would have great application potential in detection of ${\beta}$-agonist residues.

Review on Membranes Containing Silver Nanoparticles with Antibacterial and Antifouling Properties (항균 및 방오 특성을 가진 은나노 입자 함유 분리막에 대한 총설)

  • Kim, HanSol;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.293-303
    • /
    • 2021
  • Separation membranes used in water filtration, protein purification or biomedical filtration device frequently undergo membrane fouling for several reasons. The formation of biofilm on the membrane surface by bacteria causes a severe problem for durability of the membrane. For the protein separation, the membrane pores get blocked due to surface hydrophobicity of the membrane. There are several approaches controlling the membrane fouling and one of them is the incorporation of silver nanoparticles. Antibacterial properties of silver nanoparticles are well known and thus widely used in several applications. In this review, we have focused on the membranes where silver nanoparticles or its derivatives are either incorporated in the active layer of thin film composite membranes or uniformly distributed throughout the whole membranes.

Large-scale purification and single-dose oral-toxicity study of human thioredoxin and epidermal growth factor introduced into two different genetically modified soybean varieties

  • Jung-Ho, Park
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.1003-1013
    • /
    • 2021
  • Thioredoxin (TRX) protein is an antioxidant responsible for reducing other proteins by exchanging cysteine thiol-disulfide and is also known for its anti-allergic and anti-aging properties. On the other hand, epidermal growth factor (EGF) is an important material used in the cosmetics industry and an essential protein necessary for dermal wound healing facilitated by the proliferation and migration of keratinocytes. EGF also assists in the formation of granulation tissues and stimulates the motility of fibroblasts. Hence, genetically modified soybeans were developed to overexpress these industrially important proteins for mass production. A single-dose oral-toxicity-based study was conducted to evaluate the potential toxic effects of TRX and EGF proteins, as safety assessments are necessary for the commercial use of seed-specific protein-expressing transgenic soybeans. To achieve this rationale, TRX and EGF proteins were mass purified from recombinant E. coli. The single-dose oral-toxicity tests of the TRX and EGF proteins were carried out in six-week old male and female Institute of Cancer Research (ICR) mice. The initial evaluation of the single-dose TRF and EGF treatments was based on monitoring the toxicity signatures and mortality rates among the mice, and the resultant mortality rates did not show any specific clinical symptoms related to the proteins. Furthermore, no significant differences were observed in the weights between the treatment and control groups of male and female ICR mice. After 14 days of treatment, no differences were observed in the autopsy reports between the various treatment and control groups. These results suggest that the minimum lethal dose of TRX and EGF proteins is higher than the allowed 2,000 mg·kg-1 limit.

Bisphenol a induces reproductive dysfunction in male mice

  • Young-Joo, Yi;Malavige Romesha, Chandanee;Dong-Won, Seo;Jung-Min, Heo;Min, Cho;Sang-Myeong, Lee
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.935-944
    • /
    • 2021
  • It has been suggested that bisphenol A (BPA), a known endocrine disruptor, interferes with the endocrine system, causing reproductive dysfunction. Recently, BPA has been found in waste water due to incomplete sewage purification, possibly threatening health through its ingestion via tap water. In this study, young male mice (6 - 7 weeks old) were administered water containing BPA (50 mg·kg-1) for four weeks, while control mice consumed water without BPA. Serum, epididymal spermatozoa and testicular sections were assessed after sacrificing the mice on day 28. No significant differences were obtained between the groups in the body, testis and seminal vesicle weights. However, the epididymal sperm motility and count levels were significantly reduced in BPA-fed mice. Significantly higher hepatotoxicity levels were also observed in mice ingesting BPA as compared to the control mice. The level of serum testosterone was reduced, and testicular sections revealed incomplete and irregular spermatogenesis in BPA-ingested mice. The sperm proteasomal-proteolytic activity level has been implicated in sperm function and is measured in motile spermatozoa using fluorometric substrates. High ubiquitin C-terminal hydrolase activity levels were observed in the control mice without BPA. During a mating trial, a low pregnancy rate (71.4%) was observed in females mated with males who had consumed BPA (100% in the control mice). Overall, BPA adversely affected spermatogenesis and quality, as indicated by decreased sperm motility, concentration and serum testosterone levels, resulting in reduced fertility competence.

Purification and characterization of versatile peroxidase from Pleurotus ostreatus produced in a rotary draft tube bioreactor (회전식 통풍관 생물반응기로부터 생산된 느타리균의 다목적 과산화효소(VP) 정제 및 특성)

  • Hyo-Cheol Ha
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.209-214
    • /
    • 2023
  • In this study, Pleurotus ostreatus No.42 was cultured in glucose-peptone-yeast-wheat bran medium using a previously reported novel rotary draft tube bioreactor. Versatile peroxidase (VP), a lignin-degrading enzyme, was isolated from a pellet-type mycelium culture grown in the medium for seven days. The VP was purified by sequentially applying ultra-filtration, DEAE-Sepharose CL-6B column, and Mono Q column. SDS-PAGE analysis revealed the molecular weight of VP to be 36.4 KDa with an isoelectric point of 3.65. The amino acid sequence was confirmed as VTCATGQTT. The purified VP was observed to possess the property of not only oxidizing Mn ions but also decomposing veratryl alcohol, a non-phenolic compound. The catalytic ability of VP is a subject for future research.