• Title/Summary/Keyword: bio-protective effects

Search Result 107, Processing Time 0.019 seconds

Respiratory Protective Effect of a RML on PM10D-induced Lung Injury Mouse Model (미세먼지 유발 폐기능 손상 동물모델에서 RML의 호흡기 보호 효과)

  • Kim, Soo Hyun;Kim, Min Ju;Shin, Mi-Rae;Roh, Seong-Soo;Kim, Seung Hyung;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • Objective : This study is aimed to evaluate the protective effects of Rehmanniae Radix, Mori Folium, and Liriopie Tuber mixture (RML) on lung injury of Particulate matter less than 10 um in diameter and diesel exhaust particles (PM10D) mice model. Methods : To investigate the anti-inflammatory activity of RML, PM10D was diluted in aluminum hydroxide (Alum) in 7-week-old male mice and induced by Intra-Nazal-Tracheal (INT) injection method. Animal experiments were divided into 5 groups. Nor (normal mice), CTL (PM10D-induced mice with the administration of distilled water), DEXA (PM10D-induced mice with the administration of 3 mg/kg Dexamethasone), RML 100 (PM10D-induced mice treated with RML 100 mg/kg weight), and RML 200 (PM10D-induced mice treated with RML 200 mg/kg body weight). After 11 days administration, mice were sacrificed and inflammation-related immune cells in broncho-alveolar lavage fluid (BALF) were analyzed. Inflammation-related biomarkers were also analyzed in blood and lungs. Lung tissue was observed through histological examination. Results : In the PM10D induced model, the PML showed decreases in CXCL-1 and IL-17A in BALF. Expression of inflammatory cytokines and cough-related mRNA genes was significantly decreased in serum and lung tissue. The mixture treatment of RML significantly improved the immune related cells in the serum. In addition, histological observations showed a tendency to decrease the severity of lung injury. Conclusions : Overall, these results confirmed the respiratory protective effect of the RML mixture in a model of lung injury induced by air pollution (PM10+DEP), suggesting that it is a potential treatment for respiratory damage.

Kainic Acid-induced Neuronal Death is Attenuated by Aminoguanidine but Aggravated by L-NAME in Mouse Hippocampus

  • Byun, Jong-Seon;Lee, Sang-Hyun;Jeon, Seong-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Young-Myeong;Kim, Myong-Jo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2009
  • Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice ($iNOS^{-1-}$) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

Vitamin D Receptor BsmI Polymorphism and Colorectal Cancer Risk: an Updated Analysis

  • Yu, Kun;Yang, Jing;Jiang, Yan;Song, Run;Lu, Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4801-4807
    • /
    • 2014
  • Background: Previous studies have investigated the association between the vitamin D receptor (VDR) BsmI polymorphism and colorectal cancer (CRC) susceptibility, but the results were conflicting. The aim of this study is to quantitatively summarize the relationship between this polymorphism and CRC risk. Materials and Methods: Two investigators independently searched the Medline, Embase, China National Knowledge Infrastructure (CNKI) and Chinese Biomedicine databases for studies published before November 2013. Summary odds ratios (ORs) and 95% confidence intervals (95%CIs) for VDR BsmI polymorphism and CRC were calculated in a fixed-effects model (the Mantel-Haenszel method) and a random-effects model (the DerSimonian and Laird method) when appropriate. Results: This meta-analysis included 14 case-control studies, which included 10,822 CRC cases and 11,779 controls. Overall, the variant genotype (BB) of the BsmI was associated with a lower CRC risk when compared with the wild-type bb homozygote (OR=0.66, 95%CI: 0.49-0.88). Similarly, a decreased CRC risk was also found in the dominant and recessive models. When stratifying for ethnicity, source of controls, and study sample size, associations were observed among Caucasians, population-based studies and studies with large study sample size (>1000 subjects). Limiting the analysis to the studies within Hardy-Weinberg equilibrium, the results were persistent and robust. No publication bias was found in the present study. Conclusions: This updated meta-analysis suggests that the VDR BsmI polymorphism may be associated with a moderate protective effect against CRC.

Effect of a Functional Food Containing Bacillus polyfermenticus on Dimethylhydrazine-Induced Colon Aberrant Crypt Formation and the Antioxidant System in Fisher 344 Male Rats

  • Park, Jun-Seok;Kim, Kee-Tae;Kim, Hyun-Sook;Paik, Hyun-Dong;Park, Eun-Ju
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.980-985
    • /
    • 2006
  • The goal of this study was to investigate the effects of a newly developed functional food containing Bacillus polyfermenticus (BP) and other physiologically active materials on the antioxidant system and the process of colon carcinogenesis in male F344 rats. Following a one-week adaptation period, the rats were divided into 3 groups and fed either a high-fat, low-fiber diet (control and DMH groups), or a high-fat, low-fiber diet supplemented with B. polyfermenticus ($3.1{\times}10^8\;CFU/day$) and other physiologically active materials (chitosan, chicory, ${\alpha}$-tocopherol, and flavonoids) (DMH+BP group). One week after the initiation of the diets, 2 groups of rats were subjected to six weeks of treatment with 1,2-dimethylhydrazine (DMH, 180 mg/kg BW, s.c.). The dietary treatments remained consistent throughout the entire experimental period. Nine weeks after the initial DMH injection, the rats supplemented with B. polyfermenticus had significantly lower numbers of aberrant crypt foci than those in the DMH group. Injections with DMH resulted in significantly higher leukocytic DNA damage and plasma lipid peroxidation levels, as well as in a lower plasma total antioxidant potential. These effects were reversed following supplementation with B. polyfermenticus and other physiological materials. Our results indicate that a functional food containing B. polyfermenticus exerts a protective effect on the antioxidant system and on the process of colon carcinogenesis, thereby suppressing the development of preneoplastic lesions.

Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells

  • Choi, Yong-Jun;Kwak, Eun-Bee;Lee, Jae-Won;Lee, Yong-Suk;Cheong, Il-Young;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Kwon, Yong-Soo;Chun, Wan-Joo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.195-200
    • /
    • 2011
  • Neuronal cell death is a common characteristic feature of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases. In the present study, docosyl cafferate (DC), a derivative of caffeic acid, was isolated from Rhus verniciflua and its protective effects on tBHP-induced neuronal cell death were examined in SH-SY5Y human neuroblastoma cells. Pretreatment of DC significantly attenuated tBHP-induced neuronal cell death in a concentration-dependent manner. DC also significantly suppressed tBHP-induced caspase-3 activation. In addition, DC restored tBHP-induced depletion of intracellular Bcl-2, an anti-apoptotic member of the Bcl-2 family. Furthermore, DC significantly suppressed tBHP-induced degradation of IKB, which retains $NF-{\kappa}B$ in the cytoplasm, resulting in the suppression of nuclear translocation of $NF-{\kappa}B$ and its subsequent activation. Taken together, the results clearly demonstrate that DC exerts its neuroprotective activity against tBHP-induced oxidative stress through the suppression of nuclear translocation of $NF-{\kappa}B$.

Protective effect of Hizikia fusiforme on radiation-induced damage in splenocytes (방사선을 조사한 마우스에서 비장세포에 대한 톳의 보호 작용)

  • Kim, Areum;Bing, So Jin;Cho, Jinhee;Ahn, Ginnae;Lee, Ji-Hyeok;Jeon, You-Jin;Lee, Byung-Gul;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • The immune system is specifically sensitive to oxidative stress induced by ionizing radiation because of its rapid proliferative activity. For this reason, an instructive immune system is one of the best ways to minimize side effects, such immunodeficiency, of gamma radiation. Over the past few decades, several natural plants with antioxidant and immunomodulatory properties have been identified as adjuncts for nontoxic and successful radiotherapy. Hizikia fusiforme extract (HFE) containing plentiful dietary fiber and fucoidan is known for its instructive antioxidant capacity, immunomodulation abilities, and immune activation. In this study, we determined whether HFE protects radiosensitive immune cells from gamma radiation-induced damage. C57BL/6 mice were irradiated with gamma-ray. The effect of HFE on the ionizing radiation damage of immune cells was then evaluated with an MTT assay, 3H-thymidine incorporation assay, and PI staining. We found that HFE stimulated the proliferation of gamma-ray irradiated immune cells without cytotoxic effects. We also observed that HFE not only decreased DNA damage but also reduced gamma radiation-induced apoptosis of the immune cells. Our results suggest that HFE can protect immune cells from gamma-ray damage and may serve as an effective, non-toxic radioprotective agent.

Antiinflammatory Activity of the Medicinal Plant Geum Japonicum

  • Kang, Soon-Ah;Shin, Ho-Jung;Choi, Sung-Eun;Yune, Kyung-Ah;Lee, Sun-Joo;Jang, Ki-Hyo;Lim, Yoong-Ho;Cho, Kang-Jin
    • Nutritional Sciences
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2006
  • G. japonicum is a perennial hem and the flowering plant has been used as a diuretic and an astringent in Japan and China. However, little information is available about the anti-inflammatory action of G. japonicum. Therefore, the objective of this study was to investigate the antiinflammatory action of fractions from G. japonicum methanol extract. Inhibition of NO production was observed when cells were cotreated with fractions of G. japonicum and lipopolysaccharide. We observed that ethyl acetate fraction of G. japonicum inhibited NO production by LPS-activated RAW 264.7 cells, and that the suppression induced by ethyl acetate fraction of G. japonicum was associated with antioxidant activity and direct NO clearance. In addition, only ethyl acetate fraction of G. japonicum inhibited stimulated $PGE_2,\;TNF-\alpha,\;IL-1\beta$ production, whereas water and methyl chloride fractions showed no such effects. The ethyl acetate fraction of G. japonicum methanol extract showed a remarkable scavenging activity on the 1,1-diphenyl-2 picrylhydrazyl radical. Based on the results, ethyl acetate fraction of G. japonicum may be useful source as natural antioxidants and antiinflammation. Therefore, the results obtained from this study provide an alternative protective mechanism of ethyl acetate fraction of G. japonicum and provide information on the potential use of ethyl acetate fraction of G. japonicum in chemoprevention or pathogenic conditions related to overproduction of NO and $PGE_2$. However, the mechanism of the inflammatory effect must be evaluated through various parameters for induction of NO production.

The Protective Effects of Isoflavone Extracted from Soybean Paste in Free Radical Initiator Treated Rats

  • Nam, Hye-Young;Min, Sang-Gi;Shin, Ho-Chul;Kim, Hwi-Yool;Fukushima, Michihiro;Han, Kyu-Ho;Park, Woo-Jun;Choi, Kang-Duk;Lee, Chi-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.586-592
    • /
    • 2005
  • This study was performed to investigate the antioxidant effects of Korean soybean paste extracts (SPE) on 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced liver damage in rats. Thirty healthy Sprague Dawley rats were selected and divided into 5 groups. Isoflavone contents were measured using HPLC technique. The antioxidant activity was measured in the plasma and liver of the rats with the following results. Levels of isoflavone in fermented soy paste, red pepper paste and soy sauce were 28.9, 30.3 and $3.4\;{\mu}g/g$ for daidzein and 244.3, 187.7 and $6.1\;{\mu}g/g$ for genistein, respectively. The activities of glutamate oxaloacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT) were significantly higher in the AAPH-treated group in the SPE-AAPH group (p<0.05). The thiobarbituric acid reactive substance (TBARS) production was significantly increased in the AAPH-treated liver tissue (P<0.05). Glutathione peroxidase (GPx), glutathione reductase (GR) and catalase in the liver were significantly (p<0.05) decreased by AAPH administration. The glutathione (GSH) concentration was higher in the SPE-treated (Ed- confirm) group than in the control and other groups (p<0.05). These results suggest that SPE led to increased anti oxidative activities against AAPH-induced peroxyl radical.

Enhancement of skin barrier and hydration-related molecules by protopanaxatriol in human keratinocytes

  • Lee, Jeong-Oog;Hwang, So-Hyeon;Shen, Ting;Kim, Ji Hye;You, Long;Hu, Weicheng;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.354-360
    • /
    • 2021
  • Background: Protopanaxatriol (PPT) is a secondary intestinal metabolite of ginsenoside in ginseng. Although the effects of PPT have been reported in various diseases including cancer, diabetes and inflammatory diseases, the skin protective effects of PPT are poorly understood. Methods: HaCaT cells were treated with PPT in a dose-dependent manner. mRNA and protein levels which related to skin barrier and hydration were detected compared with retinol. Luciferase assay was performed to explore the relative signaling pathway. Western blot was conducted to confirm these pathways and excavated further signals. Results: PPT enhanced the expression of filaggrin (FLG), transglutaminase (TGM)-1, claudin, occludin and hyaluronic acid synthase (HAS) -1, -2 and -3. The mRNA expression levels of FLG, TGM-1, HAS-1 and HAS-2 were suppressed under NF-κB inhibition. PPT significantly augmented NF-κB-luc activity and upregulated Src/AKT/NF-κB signaling. In addition, PPT also increased phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK, JNK and p38 and upstream MAPK activators (MEK and MKK). Furthermore, transcriptional activity of AP-1 and CREB, which are downstream signaling targets of MAPK, was enhanced by PPT. Conclusion: PPT improves skin barrier function and hydration through Src/AKT/NF-κB and MAPK signaling. Therefore, PPT may be a valuable component for cosmetics or treating skin disorders.

Protective effects of Paeoniae Radix Alba and Puerariae Radix combination on alcoholic liver disease (알코올성 간 손상 동물 모델에서 芍藥 葛根 복합물의 간 손상 보호 효과)

  • Jeong Won, Choi;Jin Young, Kim;Mi-Rae, Shin;Hae-Jin, Park
    • The Korea Journal of Herbology
    • /
    • v.38 no.1
    • /
    • pp.31-43
    • /
    • 2023
  • Objective : Alcoholic liver disease (ALD) is caused by excess alcohol intake. In the liver, alcohol breakdown results formation of toxic byproducts that lead to damage to tissue. This study is to investigate the therapeutic effects of Paeoniae Radix Alba and Puerariae Radix combination (PP) on ALD. Methods : PP was analyzed for polyphenolic compounds and free radical scavenging activity. ALD mouse model was induced by feeding ethanol and water (Control), silymarin (50 mg/kg), low-dose (PP: 100 mg/kg) or high-dose (PP: 200 mg/kg) was orally administrated to ALD mice for 14 days. The serum was assessed with levels of AST, ALT, total bilirubin, total cholesterol, and triglyceride. Liver tissues were evaluated for ROS levels, degree of liver damage and protein expression. Results : The 3:1 (Paeoniae Radix Alba:Puerariae Radix) ratio showed the best antioxidant values for the experiment. In ALD model, levels of AST, ALT, total bilirubin, total cholesterol, and triglyceride were significantly increased in the Control and the levels were decreased by treatment of PP. In addition, increased ROS, ONOO- and MDA levels in the Control were reduced in the PP groups. Western blot analysis figured out that proteins related to ROS and cholesterol metabolism were higher in ALD than in PP-treated ALD. Antioxidant enzyme expression was low in the control group and increased by PP treatment. Conclusion : Our results suggest that PP has the potential to be a medicine in ALD in terms of regulating oxidative stress and adjusting lipid metabolism.