DOI QR코드

DOI QR Code

알코올성 간 손상 동물 모델에서 芍藥 葛根 복합물의 간 손상 보호 효과

Protective effects of Paeoniae Radix Alba and Puerariae Radix combination on alcoholic liver disease

  • 최정원 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 김진영 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 신미래 (대구한의대학교 한의과대학 본초약리학교실) ;
  • 박해진 (대구한의대학교 DHU 바이오융복합시험센터)
  • Jeong Won, Choi (Department of Herbology, Korean Medicine of College, Daegu Haany University) ;
  • Jin Young, Kim (Department of Herbology, Korean Medicine of College, Daegu Haany University) ;
  • Mi-Rae, Shin (Department of Herbology, Korean Medicine of College, Daegu Haany University) ;
  • Hae-Jin, Park (DHU Bio Convergence Testing Center)
  • 투고 : 2022.12.15
  • 심사 : 2023.01.25
  • 발행 : 2023.01.30

초록

Objective : Alcoholic liver disease (ALD) is caused by excess alcohol intake. In the liver, alcohol breakdown results formation of toxic byproducts that lead to damage to tissue. This study is to investigate the therapeutic effects of Paeoniae Radix Alba and Puerariae Radix combination (PP) on ALD. Methods : PP was analyzed for polyphenolic compounds and free radical scavenging activity. ALD mouse model was induced by feeding ethanol and water (Control), silymarin (50 mg/kg), low-dose (PP: 100 mg/kg) or high-dose (PP: 200 mg/kg) was orally administrated to ALD mice for 14 days. The serum was assessed with levels of AST, ALT, total bilirubin, total cholesterol, and triglyceride. Liver tissues were evaluated for ROS levels, degree of liver damage and protein expression. Results : The 3:1 (Paeoniae Radix Alba:Puerariae Radix) ratio showed the best antioxidant values for the experiment. In ALD model, levels of AST, ALT, total bilirubin, total cholesterol, and triglyceride were significantly increased in the Control and the levels were decreased by treatment of PP. In addition, increased ROS, ONOO- and MDA levels in the Control were reduced in the PP groups. Western blot analysis figured out that proteins related to ROS and cholesterol metabolism were higher in ALD than in PP-treated ALD. Antioxidant enzyme expression was low in the control group and increased by PP treatment. Conclusion : Our results suggest that PP has the potential to be a medicine in ALD in terms of regulating oxidative stress and adjusting lipid metabolism.

키워드

과제정보

본 연구는 산업통상자원부와 한국산업기술진흥원의 "사회적경제혁신성장사업" (과제번호 P0017625)과, 2022년도 정부재원 (과학기술정보통신부 여성과학기술인 R&D 경력복귀 지원사업)으로 한국여성과학기술인육성재단의 지원 (협약번호 제 2022-339호)을 받아 연구되었습니다.

참고문헌

  1. Statistics Korea. Causes of Death Statistics 2021 [cited 2022 Dec 13]. Available form : URL : https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B34E01&conn_path=I2
  2. Chae HB. Review: Alcoholic Liver Disease. Kor. J. Gastroenterol. 2009 ; 53(5) : 275-82. https://doi.org/10.4166/kjg.2009.53.5.275
  3. Kwon MH, Min KJ, Kim YC. Inhibitory Effects of Peonia japonica Water Extract on Skin Aging (I) - Focussed on Alleviative Effects of Inflammation and Skin Barrier Damage -. J. Environ. Toxicol. 2009 ; 24(2) : 159-67.
  4. Mun YJ. Anti-inflammatory activity of jakyakgamcho-tang on Lipopolysaccharide-Stimulated BV-2 Microglia Cells. Kor. J. Herbology. 2022 ; 37(5) : 83-8.
  5. Kim MR, Kang OH, Kim SB, Kang HJ, Kim JE, Hwang HC. The Study of Anti-inflammatory Effect of Hwanggeumjakyak-tang Extract in RAW 264.7 Macrophage. Kor. J. Herbology. 2013 ; 28(1) : 43-50. https://doi.org/10.6116/KJH.2013.28.1.43
  6. Chan K, Liu ZQ, Jiang ZH, Zhou H, Wong YF, Xu H-X, Liu L. The effects of sinomenine on intestinal absorption of paeoniflorin by the everted rat gut sac model. J. Ethnopharmacol. 2006 ; 103(3) : 425-32. https://doi.org/10.1016/j.jep.2005.08.020
  7. Yang HO, Ko WK, Kim JY, Ro HS. Paeoniflorin: an antihyperlipidemic agent from Paeonia lactiflora. Fitoterapia. 2004 ; 75(1) : 45-9. https://doi.org/10.1016/j.fitote.2003.08.016
  8. Sugaya A, Suzuki T, Sugaya E, Yuyama N, Yasuda K, Tsuda T. Inhibitory effect of peony root extract on pentylenetetrazol-induced EEG power spectrum changes and extracellular calcium concentration changes in rat cerebral cortex. J. Ethnopharmacol. 1991 ; 33(1-2) : 159-67. https://doi.org/10.1016/0378-8741(91)90174-C
  9. Fan LL, O'Keefe DD, Powell WW Jr. Pharmacologic studies on radix puerariae: effect of puerarin on regional myocardial blood flow and cardiac hemodynamics in dogs with acute myocardial ischemia. Chin. Med. J. 1985 ; 98(11) : 821-32.
  10. Chiao CY, Kwon HJ, Jeong JS, Lee JH, Hong SP. Determination Method of Puerarin and Daidzin from Puerariae Radix by Reversed-Phase HPLC with Pulsed Amperometric Detection. Kor. J. Herbology. 2008 ; 23(4) : 171-7.
  11. Keung WM, Vallee BL. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. PNAS. 1993 ; 90(4) : 1247-51. https://doi.org/10.1073/pnas.90.4.1247
  12. Keung WM, Vallee BL. Therapeutic lessons from traditional Oriental medicine to contemporary Occidental pharmacology. EXS. 1994 ; 71 : 371-81.
  13. Singleton V, Rossi J. Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965 ; 16 : 144-58. https://doi.org/10.5344/ajev.1965.16.3.144
  14. Woisky R, Salatino, A. Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control. J. Apic. Res. 1998 ; 37 : 99-105. https://doi.org/10.1080/00218839.1998.11100961
  15. Blois M. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958 ; 181 : 1199-200. https://doi.org/10.1038/1811199a0
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999 ; 26(9-10) : 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Ali S, LeBel C, Bondy S. Reactive Oxygen Species Formation as a Biomarker of Methylmercury and Trimethyltin Neurotoxicity. Neurotoxicology. 1992 ; 13 : 637-48.
  18. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 1994 ; 16(2) : 149-56. https://doi.org/10.1016/0891-5849(94)90138-4
  19. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978 ; 86(1) : 271-8. https://doi.org/10.1016/0003-2697(78)90342-1
  20. Hur K, Park IK. Clinical Usefulness of Direct/Total Bilirubin Ratio. Lab. Med. Online. 2018 ; 8(4) : 127-34. https://doi.org/10.3343/lmo.2018.8.4.127
  21. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India. 2004 ; 52 : 794-804.
  22. Lan T, Kisseleva T, Brenner DA. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation. PLoS One. 2015 ; 10(7) : e0129743.
  23. Sies H, Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol. 2020 ; 21 : 363-83. https://doi.org/10.1038/s41580-020-0230-3
  24. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free. Radic. Biol. Med. 1991 ; 11(1) : 81-128.  https://doi.org/10.1016/0891-5849(91)90192-6
  25. Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. J. Lipid Res. 1979 ; 20(3) : 289-315.  https://doi.org/10.1016/S0022-2275(20)40613-3
  26. Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS. Defect in peroxisome proliferator- activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J. Biol. Chem. 2000 ; 275(37) : 28918-28. https://doi.org/10.1074/jbc.M910350199
  27. Lee SH, Jung JY, Park SM, Jegal KH, Byun SH, Cho IJ, Kim SC, Kim KJ, Kim YW. Hepatoprotective Effect of Paeoniae Radix via Nrf2 Activation. Kor. J. Herbology. 2016 ; 31(1) : 33-40. https://doi.org/10.6116/KJH.2016.31.1.33.
  28. Hyun DH, Jung SY, Jung SS, Ha KT, Kim CH, Kim DW, Kim JK, Choi DY. The Study of Protective Effect of Puerariae Radix against CCl4-induced Hepatotoxicity. J Physiol & Pathol Korean Med 2003 ; 17(2) : 297-307.
  29. Lee SH, Shin MR, Lee JH, Roh SS. Effects of water extract of Paeoniae Radix Alba on a thioacetamide induced acute liver injury rat model. J. Nutr. Health. 2021 ; 54(2) : 224-37. https://doi.org/10.4163/jnh.2021.54.2.224
  30. Kim OK. Protective Effects of Extract of Puerariae Radix on Hepatic Injury Induced by Carbon Tetrachloride In Rat. KOCS. 2017 ;  34(3) : 443-50.
  31. Kim JO, Kim SJ, Kim JB, Nam WH, Lee JB, Lee HD. Comparison of Ingredient and Efficacy of Galgeuntang (Gegen-tang) Mix Extract Powder and Decoction. JPPKM. 2019 ; 33(1) : 39-47. https://doi.org/10.15188/kjopp.2019.02.33.1.39
  32. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell. Biochem. Biophys. 2009 ; 53(2) : 75-100. https://doi.org/10.1007/s12013-009-9043-x
  33. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020 ; 21(7) : 363-83. https://doi.org/10.1038/s41580-020-0230-3
  34. Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ. Res. 2006 ; 98(4) : 453-62. https://doi.org/10.1161/01.RES.0000204727.46710.5e
  35. Sea K, Sohn SH, Durazo A, Sheng Y, Shaw BF, Cao X, Taylor AB, Whitson LJ, Holloway SP, Hart PJ, Cabelli DE, Gralla EB, Valentine JS. Insights into the role of the unusual disulfide bond in copperzinc superoxide dismutase. J. Biol. Chem. 2015 ; 290(4) : 2405-18.  https://doi.org/10.1074/jbc.M114.588798
  36. You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem. 2002 ; 277(32) : 29342-7. https://doi.org/10.1074/jbc.M202411200
  37. Shim JJ. Secondary Causes of Fatty Liver. STS. 2018 ; 2018(2) : 16-22.
  38. Lee W, Seo YK. SREBP as a Global Regulator for Lipid Metabolism. J. Life. Sci. 2018 ; 28(10) : 1233-43. https://doi.org/10.5352/JLS.2018.28.10.1233
  39. Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu. Rev. Cell Dev. Biol. 1996 ; 12 : 335-63.  https://doi.org/10.1146/annurev.cellbio.12.1.335