• Title/Summary/Keyword: bio-potential

검색결과 1,482건 처리시간 0.027초

Effect of Fungicides on Phosphate Solubilization by Klebsiella oxytoca and Enterobacter ludwigii

  • Walpola, Buddhi Charana;Keum, Mi-Jung;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제46권2호
    • /
    • pp.112-116
    • /
    • 2013
  • The aim of the present study was to isolate phosphate solubilizing bacteria (PSB) and to assess their potential tolerance to fungicides. Out of thirty PSB, two strains Klebsiella oxytoca and Enterobacter ludwigii were selected on the basis of their tolerance to fungicides. Both strains were assessed for their phosphate solubilizing ability using three different fungicides (difenoconazole, fluazinam and streptomycin) each with the concentrations of 0, 1, 2 or 3 times of the recommended rate. Both strains showed increased phosphate solubilization with difenoconazole at 1, 2 and 3 times of the recommended rate as compared to the phosphate solubilization of the control. The phosphate solubilization in Klebsiella oxytoca was recorded as 326, 538, 518 and 481 ${\mu}g\;mL^{-1}$ at 0, 1, 2 and 3 times of the recommended rate respectively, whereas in Enterobacter ludwigii it was recorded as 395, 499, 529 and 533 ${\mu}g\;mL^{-1}$ respectively at various doses. Based on the present findings, it may be concluded that both strains have the potential to be used as bio-inoculants which can solubilize phosphate even at the higher doses as compared to the recommended rate of fungicides.

Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field

  • Shin, Jong-Hwan;Park, Byung-Seoung;Kim, Hee-Yeong;Lee, Kwang-Ho;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제37권3호
    • /
    • pp.307-314
    • /
    • 2021
  • Pepper (Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei, a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei. By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis, a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei.

자화침 시스템을 이용한 경락전위 유발효과 및 근피로 회복 평가 (Evaluation of Muscle Fatigue Recovery Effect and Meridian Potential Change using Magnetic Acupuncture System)

  • 김수병;박선우;안순재;이나라;이승욱;민세은;김영호;이용흠
    • Korean Journal of Acupuncture
    • /
    • 제29권1호
    • /
    • pp.83-92
    • /
    • 2012
  • Objectives : The purpose of this research was to develop the magnetic acupuncture system which used solenoid coil for magnetizing acupuncture needle. The system could generate the meridian electric potential (MEP) similar to the potential by manual acupuncture. Thus, we tried to confirm the therapeutic effect that is caused by the MEP generation. Methods : To confirm the MEP, we stimulated the magnetic acupuncture with at 2Hz, $92.7{\pm}2mT$, PEMFs (Pulsed Electro-Magnetic Fields) at ST37 and measured the evoked potential between ST36 and ST41. Also, we conducted a fatigue recovery test using isokinetic exercise in order to identify the therapeutic effect on musculoskeletal disorders. We chose LR9 as a stimulation point. To observe the state of fatigue, we measured the EMG and analyzed median frequency and peak torque for 20minutes. Results : We observed that MEP which incurred from magnetic acupuncture was higher than he reported MEP induced by manual acupuncture. Moreover, its modes were divided into two types by the direction of magnetic flux. When generating magnetic flux in the direction of acupoint, the positive peak voltage of the MEP was generated. In contrast, negative peak voltage of the MEP was generated whenever meganetic flux generated in the outward direction. As a result of fatigue recovery, the median frequency (MF) of the magnetic acupuncture group were recovered faster than that of the non-stimulation group. However, the peak torques of both groups were not restored until after 20 minutes. Conclusions : We confirmed that the magnetic acupuncture system can lead to the MEP similar to manual acupuncture. Moreover, the MEP had a therapeutic effect on the musculoskeletal disorders.

층층갈고리둥굴레 (Polygonatum sibiricum Redoute) 뿌리줄기와 잎의 증숙 시간과 증숙 온도에 따른 생리활성 변이 연구 (Changes of Biological Activities of Rhizome and Leaves of Polygonatum sibiricum Redoute according to Steaming Time and Temperature)

  • 오영선;최재후;김철중;성은수;김명조;유창연;이재근
    • 한국약용작물학회지
    • /
    • 제28권5호
    • /
    • pp.331-338
    • /
    • 2020
  • Background: The aim of this study was to analyze the total phenol and total flavonoid contents and antioxidant activity of steam-treated leaves and rhizomes of Polygonatum sibiricum Redoute. In addition, we aimed to confirm their potential use as cosmetic materials by investigating their anti-aging and skin-whitening activity. Methods and Results: The leaves and rhizomes of P. sibiricum were treated with steam at different temperatures for different durations, and the antioxidant activity (DPPH and ABTS radical scavenging activity) and total phenol and total flavonoid contents of each sample were tested. The steam temperature and treatment duration siginificantly affected the antioxidant activity and, total phenol and total flavonoid content of the leaves and rhizome of P. sibiricum. Treating the P. sibiricum samples with steam at 120℃ for 12 h, yielded higher total phenol and total flavonoid contents. Comparatively, the samples treated with steam at 120℃ for 12 to 24 h showed significantly higher antioxidant activity. Further, the steamed samples of P. sibiricum demonstrated collagenase and tyrosinase inhibition activity, which indicated their anti-aging and skin-whitening properties. The samples steamed at 120℃ for 12 h, exhibited higher collagenase and tyrosinase inhibition activity. Conclusions: Leaves and rhizomes of P. sibiricum steamed at 120℃ for 12 h, showed highest antioxidant activity and, total phenol and total flavonoid contents than all other samples. Our results indicate the potential of using P. sibiricum as a cosmetic material by confirming its excellent anti-aging and whitening activity.

Bio-Composite Materials Precursor to Chitosan in the Development of Electrochemical Sensors: A Critical Overview of Its use with Micro-Pollutants and Heavy Metals Detection

  • Sarikokba, Sarikokba;Tiwari, Diwakar;Prasad, Shailesh Kumar;Kim, Dong Jin;Choi, Suk Soon;Lee, Seung-Mok
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.237-257
    • /
    • 2020
  • The role of nano bio-composites precursor to chitosan are innumerable and are known for having different applications in various branches of physical sciences. The application to the sensor development is relatively new, where only few literature works are available to address the specific and critical analysis of nanocomposites in the subject area. The bio-composites are potential and having greater affinity towards the heavy metals and several micro-pollutants hence, perhaps are having wider implications in the low or even trace level detection of the pollutants. The nano-composites could show good selectivity and suitability for the detection of the pollutants as they are found in the complex matrix. However, the greater challenges are associated using the bio-composites, since the biomaterials are prone to be oxidized or reduced at an applied potential and found to be a hinderance for the detection of target pollutants. In addition, the materials could proceed with a series of electrochemical reactions, which could produce different by-products in analytical applications, resulting in several complex phenomena in electrochemical processes. Therefore, this review addresses critically various aspects of an evaluation of nano bio-composite materials in the electrochemical detection of heavy metals and micro-pollutants from aqueous solutions.

Safety assessment of the AtCYP78A7 protein expressed in genetically modified rice tolerant to abiotic stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Park, Jung-Ho;Yoon, Won Kee;Kim, Ho Bang;Kim, Chang-Gi
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.248-257
    • /
    • 2018
  • Overexpression of AtCYP78A7, a gene encoding a cytochrome P450 protein, has been reported to improve tolerance to drought stress in genetically modified (GM) rice (Oryza sativa L.). The aim of this study was to evaluate the potential allergenicity and acute oral toxicity of the AtCYP78A7 protein expressed in GM rice. Bioinformatics analysis of the amino acid sequence of AtCYP78A7 did not identify any similarities with any known allergens or toxins. It showed that no known allergen had more than a 35% amino acid sequence homology with the AtCYP78A7 protein over an 80 amino acid window or more than 8 consecutive identical amino acids. The gene encoding the AtCYP78A7 protein was cloned in the pGEX-4T-1 vector and expressed in E. coli. Then, the AtCYP78A7 protein was purified and analyzed for acute oral toxicity. The AtCYP78A7 protein was fed at a dose of 2,000 mg/kg body weight in mice, and the changes in mortalities, clinical findings, and body weight were monitored for 14 days after the dosing. Necropsy was carried out on day 14. The protein did not cause any adverse effects when it was orally administered to mice at 2000 mg/kg body weight. These results indicate that the AtCYP78A7 protein expressed in GM rice would not be a potential allergen or toxin.

Selection and Characterization of Bacteriocin-Producing Lactobacillus sp. AP 116 from the Intestine of Pig for Potential Probiotics

  • Shin, Myeong-Su;Choi, Hyun-Jong;Jeong, Kyeong-Hyeon;Lim, Jong-Cheol;Kim, Kyeong-Su;Lee, Wan-Kyu
    • 한국축산식품학회지
    • /
    • 제32권1호
    • /
    • pp.31-39
    • /
    • 2012
  • The purpose of this study was to isolate bacteriocin-producing bacteria with antagonistic activities against pathogens from the intestines of pigs for probiotic use. Lactobacillus sp. AP 116 possessing antimicrobial property was selected from a total of 500 isolates. The AP 116 strain showed a relatively broad spectrum of inhibitory activity against Listeria monocytogenes, Clostridium perfringens, Pediococcus dextrinicus, and Enterococcus strains using the spot-on-lawn method. Bacteriocin activity remained unchanged after 15 min of heat treatment at $121^{\circ}C$ and exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. Maximum production of bacteriocin occurred at $34^{\circ}C$ when a pH of 6.0 was maintained throughout the culture during fermentation. According to a tricine SDS-PAGE analysis, the molecular weight of the bacteriocin was approximately 5 kDa. The isolate tolerated bile salts and low pH, and also induced nitric oxide (NO) in mouse peritoneal macrophages. Bacteriocin and bacteriocin-producing bacteria, such as Lactobacillus sp. AP 116, could be potential candidates for use as probiotics as an alternative to antibiotics in the pig industry.

Evaluation of Antioxidant Activities and Active Compounds Separated from Water Soluble Extracts of Korean Black Pine Barks

  • Shen, Chang-Zhe;Jun, Hong-Young;Choi, Sung-Ho;Kim, Young-Man;Jung, Eun-Joo;Oh, Gi-Su;Joo, Sung-Jin;Kim, Sung-Hyun;Kim, Il-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3567-3572
    • /
    • 2010
  • Black pine barks from the southern region of Korea were extracted using pressurized hot water and the water soluble extracts were then separated in a stepwise fashion using a variety of solvents, column chromatography (CC), thin layer chromatography (TLC), and high pressure liquid chromatography (HPLC). The antioxidant activities of each fraction and the active compounds were determined based on the radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), reductive potential of ferric ion, and total phenol contents. A DPPH test showed that the half maximal effective concentration ($EC_{50}$ value : $6.59{\pm}0.31\;{\mu}g/mL$) of the ethyl acetate fraction (ca. 0.67%) was almost the same as that of the control compounds and inversely proportional to the value of the total phenol contents. The cell viability of the water extracts was confirmed by methyl thiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) with enzyme linked immune sorbent assay (ELISA). Catechin, epicatechin, quercetin and ferulic acid were isolated from the ethyl acetate fraction as active compounds and identified by nuclear magnetic resonance. The antioxidant activity as value of DPPH of each of the separated compounds was lower than the ethyl acetate fraction, and ferulic acid was the lowest among these compounds.

The Immunomodulatory Activity of Mori folium, the Leaf of Morus alba L., in RAW 264.7 Macrophages in Vitro

  • Kwon, Da Hye;Cheon, Ji Min;Choi, Eun-Ok;Jeong, Jin Woo;Lee, Ki Won;Kim, Ki Young;Kim, Sung Goo;Kim, Suhkmann;Hong, Su Hyun;Park, Cheol;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Cancer Prevention
    • /
    • 제21권3호
    • /
    • pp.144-151
    • /
    • 2016
  • Background: Immunoregulatory elements have emerged as useful immunotherapeutic agents against cancer. In traditional medicine, Mori folium, the leaf of Morus alba L. (Moraceae), has been used for various medicinal purposes; however, the immunomodulatory effects have not been fully identified. We evaluated the immunoenhancing potential of water extract of Mori folium (WEMF) in murine RAW264.7 macrophages. Methods: RAW264.7 cells were treated with WEMF for 24 hours and cell viability was detected by an MTT method. Nitric oxide (NO) levels in the culture supernatants were assayed using Griess reagent. The productions of prostaglandin $E_2$ ($PGE_2$) and immune-related cytokines was measured using ELISA detection kits. The mRNA and protein expression levels of Inducible NO synthase, COX-2, and cytokines were assayed by reverse transcription-PCR and Western blotting, respectively. The effect of WEMF on phagocytic activity was measured using a Phagocytosis Assay Kit. Results: WEMF significantly stimulated the production of NO and $PGE_2$ as immune response parameters at noncytotoxic concentrations, which was associated with the increased expression of inducible NO synthase and COX-2. The release and expression of cytokines, such as $TNF-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6, and IL-10, were also significantly increased in response to treatment with WEMF. Moreover, WEMF promoted the macrophagic differentiation of RAW264.7 cells and the resulting phagocytosis activity. Conclusions: WEMF has the potential to modulate the immune function by regulating immunological parameters. Further studies are needed to identify the active compounds and to support the use of WEMF as an immune stimulant.

Solubilization of Inorganic Phosphates and Plant Growth Promotion by Pantoea Strains

  • Walpola, Buddhi Charana;Kong, Won-Sik;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제46권6호
    • /
    • pp.494-501
    • /
    • 2013
  • Two phosphate solubilizing Pantoea strains (P. agglomerans and P. rodasii) were employed in elucidating their phosphate solubilizing potential under different carbon and nitrogen sources, pH, temperature and salt conditions. Plant growth promoting characteristics such as ACC deaminase activity, indole acetic acid (IAA), HCN, ammonia, and siderophore production of the two strains were assessed in vitro. Potential applicability of the strains as bio-inoculants was also evaluated in pot experiments conducted under green house conditions. Phosphate solubilization measured as the amount of phosphorous released into the medium was recorded as 810 and $788{\mu}g\;ml^{-1}$ respectively by P. agglomerans and P. rodasii. Glucose at the rate of 2% was found be the best carbon source, while $(NH_4)_2SO_4$ was the best nitrogen source for both strains. Despite a slight decrease in phosphate solubilization observed at higher temperature, pH and salt concentrations, both strains could withstand against a range of temperature ($30-35^{\circ}C$), pH (7-9) and the presence of NaCl (up to 5%) without much compromising the phosphate solubilization. Different plant growth promoting traits (ACC deaminase activity, IAA, HCN, ammonia, and siderophore production) of the strains and their ability to promote the growth of green gram seedlings indicate that both strains possess high potential to be used as bio-inoculants.