DOI QR코드

DOI QR Code

Evaluation of Antioxidant Activities and Active Compounds Separated from Water Soluble Extracts of Korean Black Pine Barks

  • Received : 2010.01.18
  • Accepted : 2010.09.24
  • Published : 2010.12.20

Abstract

Black pine barks from the southern region of Korea were extracted using pressurized hot water and the water soluble extracts were then separated in a stepwise fashion using a variety of solvents, column chromatography (CC), thin layer chromatography (TLC), and high pressure liquid chromatography (HPLC). The antioxidant activities of each fraction and the active compounds were determined based on the radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), reductive potential of ferric ion, and total phenol contents. A DPPH test showed that the half maximal effective concentration ($EC_{50}$ value : $6.59{\pm}0.31\;{\mu}g/mL$) of the ethyl acetate fraction (ca. 0.67%) was almost the same as that of the control compounds and inversely proportional to the value of the total phenol contents. The cell viability of the water extracts was confirmed by methyl thiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) with enzyme linked immune sorbent assay (ELISA). Catechin, epicatechin, quercetin and ferulic acid were isolated from the ethyl acetate fraction as active compounds and identified by nuclear magnetic resonance. The antioxidant activity as value of DPPH of each of the separated compounds was lower than the ethyl acetate fraction, and ferulic acid was the lowest among these compounds.

Keywords

References

  1. Choi, O. J. Utilization and Compounds of Medicinal Plants; Ilweolseogak: Seoul, Korea, 1991.
  2. Yesil-Celiktes, O.; Otto, F.; Parlar, H. Eur. Food Res. Technol. 2009, 229, 671. https://doi.org/10.1007/s00217-009-1101-5
  3. Selga, A.; Torres, J.L. J. Agric. Food Chem. 2005, 53(20), 7760. https://doi.org/10.1021/jf0509815
  4. Cui, Y. Y.; Xie, H.; Wang, J. F. Phytother. Res. 2005, 19(1), 34. https://doi.org/10.1002/ptr.1619
  5. Jung, M. J.; Chung, H. Y.; Choi, J. H.; Choi, J. S. Phytother. Res. 2003, 17(9), 1064. https://doi.org/10.1002/ptr.1302
  6. Kim, N. Y.; Jang, M. K.; Lee, D. G.; Yu, K. H.; Jang, H. J.; Kim, M. H.; Kim, G. K.; Yoo, B. H.; Lee, S. H. Nutr. Res. Pract. 2010, 4(1), 16. https://doi.org/10.4162/nrp.2010.4.1.16
  7. Guri, A.; Kefalas, P.; Roussis, V. Phytother. Res. 2006, 20(4), 263 https://doi.org/10.1002/ptr.1848
  8. Noda, Y.; Anzai, K.; Mord, A.; Kohen, M.; Shinmei, M.; Packer, L. Biochem. Mol. Biol. Int. 1997, 42(1), 35.
  9. Rohdewald, P. Int. J. Clin. Pharmacol. Ther. 2002, 40(4), 158. https://doi.org/10.5414/CPP40158
  10. Macrides, T. A.; Shihata, A.; Kalafatis, N. Wright, P. F. A. Biochem. Mol. Biol. Int. 1997, 42(6), 1249.
  11. Mazur, A.; Bayle, D.; Lab, C.; Rock, E.; Rayssiguier, Y. Atherosclerosis. 1999, 145(2), 421. https://doi.org/10.1016/S0021-9150(99)00115-X
  12. Packer, L.; Rimbach, G.; Virgili, F. Free Radic. Biol. Med. 1999, 27(5/6), 704. https://doi.org/10.1016/S0891-5849(99)00090-8
  13. Huynh, H. T.; Teel, R. W. Anticancer Res. 2000, 20(4), 2417.
  14. Watanabe, K.; Matsushita, M.; Matsushita, Y.; Umemoto, T. Koku Eisei Gakkai Zasshi. 2007, 57(5), 605.
  15. Gruen, I. U.; Ahn, J. 230th National Meeting of the American Chemical Society, Washington, DC, Aug 28-Sept.1, 2005; American Chemical Society.
  16. Son, Y. S. Korean Kongkae Taeho Kongbo, KR 2004063696
  17. Tenenbaum, S.; Paull, J. C.; Sparrow, E. P.; Dodd, D. K.; Green. L. J. Atten. Disord. 2002, 6, 49 https://doi.org/10.1177/108705470200600201
  18. Huynh, H. T.; Teel, R. W. Anticancer Res. 1999, 19, 2095
  19. Shand, B.; Strey, C.; Scott, R.; Morrison, Z.; Gieseg, S. Phytother. Res. 2003, 17(5), 490. https://doi.org/10.1002/ptr.1181
  20. Kofujita, H.; Ettyu, K.; Ota, M. Wood Sci. Technol. 1999, 33(3), 223. https://doi.org/10.1007/s002260050111
  21. Kang, Y. H.; Howard, L. R. J. Food Sci. Nutr. 2010, 15(1), 36. https://doi.org/10.3746/jfn.2010.15.1.036
  22. Soto, R.; Freer, J.; Reyes, N.; Baeza, J. Bol. Soc. Chil. Quim. 2001, 46(1), 41.
  23. Jerez, M.; Selga, A.; Sineriro, J.; Torres, J. L.; Nunez, M. J. Food Chem. 2003, 100(2), 439 https://doi.org/10.1016/j.foodchem.2005.09.064
  24. Jerez, M.; Tourino, S.; Sineriro, J.; Torres, J. L.; Nunez, M. J. Food Chem. 2007, 104(2), 518. https://doi.org/10.1016/j.foodchem.2006.11.071
  25. Shimada, K.; Fujikawa, K.; Nakamura, T. J. Agric. Food Chem. 1992, 40, 945. https://doi.org/10.1021/jf00018a005
  26. Oyaizu, M. Jap. J. Nutr. 1986, 44, 307. https://doi.org/10.5264/eiyogakuzashi.44.307
  27. Spanos, G. A.; Wrolstad, R. E. J. Agric. Food Chem. 1990, 38, 1565. https://doi.org/10.1021/jf00097a030
  28. Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M. Methods Enzymol. 1999, 299, 152 https://doi.org/10.1016/S0076-6879(99)99017-1
  29. Vinson, J.; Zubik, L.; Bose, P.; Samman, N.; Proch, J. J. Am. Coll. Nutr. 2005, 24(1), 44 https://doi.org/10.1080/07315724.2005.10719442
  30. Mosmann, T. J. Immuno Methods 1983, 65, 55. https://doi.org/10.1016/0022-1759(83)90303-4
  31. Hugo, E.; Gottlieb, V, K.; Abraham, N. J. Org. Chem. 1997, 62, 7512. https://doi.org/10.1021/jo971176v
  32. Watanabe, M. J. Agric. Food Chem. 1998, 46, 839. https://doi.org/10.1021/jf9707546
  33. Wawer, I.; Zillinska, A. Magn. Reson. Chem. 2001, 39, 374. https://doi.org/10.1002/mrc.871
  34. Van der Woude, H.; Boersma, M. G.; Vervoort, J.; Rietjens, I. M. Chem. Res. Toxicol. 2004, 17(11), 1520 https://doi.org/10.1021/tx049826v
  35. Shih, C. Y.; Dumbroff, E. B.; Thompson, J. E. Plant Physiol. 1989, 89, 1053 https://doi.org/10.1104/pp.89.4.1053
  36. Rahouti, M.; Seigle-Murandi, F.; Steiman, R.; Eriksson, K-E. Appl. Environ. Microbiol. 1989, 55(9), 2391.
  37. Castelluccio, C.; Paganga, G.; Melikian, N.; Bolwell, G.; Pridham, J.; Sampson, J.; Rice-Evans, C. FEBS Lett. 1995, 368, 188. https://doi.org/10.1016/0014-5793(95)00639-Q
  38. Salah, N.; Miller, N. J.; Pagannga, G.; Tijburg, L.; Bolwell, G. P.; Rice-Evans, C. Arch. Biochem. Biophys. 1995, 322(2), 339. https://doi.org/10.1006/abbi.1995.1473
  39. Oldreive, C.; Zhao, K.; Paganga, G.; Halliwell, B.; Rice-Evans, C. Chem. Res. Toxicol. 1998, 11(12), 1574. https://doi.org/10.1021/tx980163p
  40. Markita, H.; Tanaka, T.; Fujitsuka, H.; Tatematsu, N.; Satoh, K.; Hara, A.; Mori, H. Cancer Res. 1996, 56, 4904.
  41. Heo, H. J.; Lee, C. Y. J. Agric. Food Chem. 2004, 52(25), 7514. https://doi.org/10.1021/jf049243r

Cited by

  1. Protective mechanisms of purified polyphenols from pinecones of Pinus koraiensis on spleen tissues in tumor-bearing S180 mice in vivo vol.8, pp.1, 2017, https://doi.org/10.1039/C6FO01235C
  2. A Review of Polyphenolics in Oak Woods vol.16, pp.12, 2015, https://doi.org/10.3390/ijms16046978
  3. Pine polyphenols from Pinus koraiensis prevent injuries induced by gamma radiation in mice vol.4, pp.None, 2010, https://doi.org/10.7717/peerj.1870
  4. Anti-cancer potential of the lipoidal and flavonoidal compounds from Pisum sativum and Vicia faba peels vol.5, pp.4, 2018, https://doi.org/10.1016/j.ejbas.2018.11.001
  5. Effects of different processing methods on the antioxidant and immune stimulating abilities of garlic vol.7, pp.4, 2010, https://doi.org/10.1002/fsn3.942
  6. Evaluation of Diuretic and Antioxidant Properties in Aqueous Bark and Fruit Extracts of Pine vol.17, pp.None, 2010, https://doi.org/10.2174/1570163817666200206105231
  7. Synthesis and Characterization of Green Carbon Dots for Scavenging Radical Oxygen Species in Aqueous and Oil Samples vol.9, pp.11, 2010, https://doi.org/10.3390/antiox9111147