Browse > Article
http://dx.doi.org/10.5851/kosfa.2012.32.1.31

Selection and Characterization of Bacteriocin-Producing Lactobacillus sp. AP 116 from the Intestine of Pig for Potential Probiotics  

Shin, Myeong-Su (College of Veterinary Medicine, Chungbuk National University)
Choi, Hyun-Jong (College of Veterinary Medicine, Chungbuk National University)
Jeong, Kyeong-Hyeon (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.)
Lim, Jong-Cheol (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.)
Kim, Kyeong-Su (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.)
Lee, Wan-Kyu (College of Veterinary Medicine, Chungbuk National University)
Publication Information
Food Science of Animal Resources / v.32, no.1, 2012 , pp. 31-39 More about this Journal
Abstract
The purpose of this study was to isolate bacteriocin-producing bacteria with antagonistic activities against pathogens from the intestines of pigs for probiotic use. Lactobacillus sp. AP 116 possessing antimicrobial property was selected from a total of 500 isolates. The AP 116 strain showed a relatively broad spectrum of inhibitory activity against Listeria monocytogenes, Clostridium perfringens, Pediococcus dextrinicus, and Enterococcus strains using the spot-on-lawn method. Bacteriocin activity remained unchanged after 15 min of heat treatment at $121^{\circ}C$ and exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. Maximum production of bacteriocin occurred at $34^{\circ}C$ when a pH of 6.0 was maintained throughout the culture during fermentation. According to a tricine SDS-PAGE analysis, the molecular weight of the bacteriocin was approximately 5 kDa. The isolate tolerated bile salts and low pH, and also induced nitric oxide (NO) in mouse peritoneal macrophages. Bacteriocin and bacteriocin-producing bacteria, such as Lactobacillus sp. AP 116, could be potential candidates for use as probiotics as an alternative to antibiotics in the pig industry.
Keywords
antimicrobial activity; bacteriocin; probiotics; alternatives; Lactobacillus;
Citations & Related Records
연도 인용수 순위
1 Yang, R., Johnson, M. C., and Ray, B. (1992) Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl. Environ. Microb. 58, 3355-3359.
2 Zhang, X., Goncalves, R., and Mosser, D. M. (2008) The isolation and characterization of murine macrophages. Curr. Protoc. Immunol. Chapter 14, Unit 14.1.
3 Mayr-Harting, A., Hedges, A. J., and Berkeley, R. C. W. (1972) Methods for studying bacteriocins. In: Methods in Microbiology. Bergen, T. and Norris, J. R. (ed) Academic Press, London, pp. 315-422
4 Mileti, E., Matteoli, G., Iliev, I. D., and Rescigno, M. (2009) Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One 4, e7056.   DOI   ScienceOn
5 Mishra, V. and Prasad, D. N. (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 103, 109-115.   DOI   ScienceOn
6 Oelschlaeger, T. A. (2010) Mechanisms of probiotic actions. Int. J. Med. Microbiol. 300, 57-62.   DOI   ScienceOn
7 Parente, E. and Ricciardi, A. (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Lett. Appl. Microbiol. 19, 12-15.   DOI   ScienceOn
8 Parente, E., Ricciardi, A., and Addario, G. (1994) Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140 NWC during batch fermentation. Appl. Microbiol. Biotechnol. 41, 388-394.
9 Roselli, M., Finamore, A., Britti, M. S., Bosi, P., Oswald, I., and Mengheri, E. (2005) Alternatives to in-feed antibiotics in pigs: evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim. Res. 54, 203-218.   DOI   ScienceOn
10 Shin M. S., Han, S. K., Ji, A. R., Kim, K. S., and Lee, W. K. (2008) Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J. Appl. Microbiol. 105, 2203-2212.   DOI   ScienceOn
11 Snyder, S. H. and Bredt, D. S. (1992) Biological roles of nitric oxide. Sci. Am. 266, 68-77.
12 Strompfova, V., Marcioakova, M., Simonova, M., Gancareíkova, S., Jonecova, Z., Scirankova, L., Koseova, J., Buleca, V., Eobanova, K., and Laukova, A. (2006) Enterococcus faecium EK13-an enterocin A-producing strain with probiotic character and its effect in piglets. Anaerobe 12, 242-248.   DOI   ScienceOn
13 Gonzalez, C. F. and Kunka, B. S. (1987) Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microb. 53, 2534-2538.
14 Doron, S. and Gorbach, S. L. (2006) Probiotics: their role in the treatment and prevention of disease. Expert. Rev. Anti-Infect. Ther. 4, 261-275.   DOI   ScienceOn
15 Du Toit, M., Franz, C. M. A. P., Dicks, L. M. T., and Holzapfel, W. H. (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microbiol. 88, 482-494.   DOI   ScienceOn
16 Gillor, O., Kirkup, B. C., and Riley, M. A. (2004) Colicins and microcins: the next generation antimicrobials. Adv. Appl. Microbiol. 54, 129-146.   DOI   ScienceOn
17 Heo, S., Lee, S. K., Lee, C. H., Min, S. G., Park, J. S., and Kim, H. Y. (2007) Morphological changes induced in Listeria monocytogenes V7 by a bacteriocin produced by Pediococcus acidilactici. J. Microbiol. Biotechnol. 17, 663-667.
18 Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., and Williams, S. T. (1994) Bergey's Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins. Baltimore, USA
19 Joerger, R. D. (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci. 82, 640-647.   DOI
20 Jung, B. Y., Lim, H. S., and Kim, B. H. (2003) Prevalence of Listeria spp. in cecal contents of livestock. Kor. J. Vet. Publ. Hlth. 27, 41-46.   과학기술학회마을
21 Kim, S. B., Lim, H. J., Lee, W. K., Hwang, I. G., Woo, G. J., and Ryu, S. R. (2006) PCR-based detection and molecular genotyping of enterotoxigenic Clostridium perfringens isolates from swine diarrhea in Korea. J. Microbiol. Biotechnol. 16, 291-294.   과학기술학회마을
22 Byun, J. W., Kim, G. T., Bae, H. S., Baek, Y. J., and Lee, W. K. (2000) In vitro selection of lactic acid bacteria for probiotic use in pigs. Korea J. Vet. Res. 40, 701-706.
23 Kosin, B. and Rakshit, S. K. (2006) Microbial and processing criteria for production of probiotics: a review. Food Technol. Biotechnol. 44, 371-379.
24 Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., and Storro, I. (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42678. Appl. Microbiol. Biotechnol. 53, 159-166.   DOI   ScienceOn
25 Bhunia, A. K., Johnson, M. C., Ray, B., and Kalchayamand, N. (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol. 70, 25-33.   DOI
26 Callaway, T. R., Anderson, R. C., Edrington, T. S., Genovese, K. J., Harvey, R. B., Poole, T. L., and Nisbet, D. J. (2004) Recent pre-harvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Anim. Health Res. Rev. 5, 35-47.   DOI   ScienceOn
27 Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20.   DOI   ScienceOn
28 Daba, H., Panadian, S., Gosselin, J. F., Simard, R., Huang, J., and Lacroix, C. (1991) Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57, 3450-3455.
29 Dahiya, J. P., Wilkie, D. C., Van Kessel, A. G., and Drew, M. D. (2006) Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 129, 60-88.   DOI   ScienceOn
30 Damelin, L. H., Dykes, G. A., and Von Holy, A. (1995) Biodiversity of lactic acid bacteria from food-related ecosystems. Microbiol. 83, 13-22.
31 Thevenot, D., Dernburg, A., and Vernozy-Rozand, C. (2006) An updated review of Listeria monocytogenes in the pork meat industry and its products. J. Appl. Microbiol. 101, 7-17.   DOI   ScienceOn
32 Warriner, K., Aldsworth, T. G., Kaur, S., and Dodd, C. E. R. (2002) Cross-contamination of carcasses and equipment during pork processing. J. Appl. Microbiol. 93, 169-177.   DOI   ScienceOn
33 Dibner, J. J. and Richards, J. D. (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poultry Sci. 84, 634-643.   DOI
34 Diez-Gonzalez, F. (2007) Applications of bacteriocins in livestock. Curr. Issues Intestinal Microbiol. 8, 15-24.