Browse > Article
http://dx.doi.org/10.7745/KJSSF.2013.46.6.494

Solubilization of Inorganic Phosphates and Plant Growth Promotion by Pantoea Strains  

Walpola, Buddhi Charana (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA)
Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.46, no.6, 2013 , pp. 494-501 More about this Journal
Abstract
Two phosphate solubilizing Pantoea strains (P. agglomerans and P. rodasii) were employed in elucidating their phosphate solubilizing potential under different carbon and nitrogen sources, pH, temperature and salt conditions. Plant growth promoting characteristics such as ACC deaminase activity, indole acetic acid (IAA), HCN, ammonia, and siderophore production of the two strains were assessed in vitro. Potential applicability of the strains as bio-inoculants was also evaluated in pot experiments conducted under green house conditions. Phosphate solubilization measured as the amount of phosphorous released into the medium was recorded as 810 and $788{\mu}g\;ml^{-1}$ respectively by P. agglomerans and P. rodasii. Glucose at the rate of 2% was found be the best carbon source, while $(NH_4)_2SO_4$ was the best nitrogen source for both strains. Despite a slight decrease in phosphate solubilization observed at higher temperature, pH and salt concentrations, both strains could withstand against a range of temperature ($30-35^{\circ}C$), pH (7-9) and the presence of NaCl (up to 5%) without much compromising the phosphate solubilization. Different plant growth promoting traits (ACC deaminase activity, IAA, HCN, ammonia, and siderophore production) of the strains and their ability to promote the growth of green gram seedlings indicate that both strains possess high potential to be used as bio-inoculants.
Keywords
Pantoea agglomerans; Pantoea rodasii; phosphate solubilization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kumar, S., K. Tamura, I.B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 17:1244-1245.   DOI   ScienceOn
2 Lugo, M.A., M. Ferrero, E. Menoyo, M.C. Estevez, F. Sineriz, and A. Anton. 2008. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along a altitudinal gradient in South American Puna grassland. Microb. Ecol. 55:705-713.   DOI
3 Malboobi, M.A., P. Owlia, M. Behbahani, E. Sarokhani, S. Moradi, B. Yakhchali, A. Deljou, and K.M. Heravi. 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J. Microbiol. Biotechnol. 25:1471-1477.   DOI
4 Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in mineral waters. Anal. Chim. Acta. 27:31-36.   DOI   ScienceOn
5 Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270.   DOI   ScienceOn
6 Nezarat, S. and A. Gholami. 2009. Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize. Pakistan J. Biol. Sci. 12:26-32.   DOI   ScienceOn
7 Payne, S. M. 1994. Detection, isolation and characterization of siderophores. In:Methods Enzymol. 235:329-344.   DOI
8 Penrose, D.M. and B.R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growthpromoting rhizobacteria. Physiol. Plant. 118:10-15.   DOI   ScienceOn
9 Rahman, M.M., C.M. Escobedo-Bonilla, M. Corteel, J.J. Dantas-Lima, M. Wille, V. Alday Sanz, M.B. Pensaert, P. Sorgeloos, and H.J. Nauwynck. 2006. Effect of high water temperature ($33^{\circ}C$) on the clinical and virological outcome of experimental infections with white spot syndrome virus (WSSV) in specific pathogen-free (SPF) Litopenaeus vannamei. Aquaculture. 261:842-849.   DOI   ScienceOn
10 Relwani, L., P. Krishna, and M.S. Reddy. 2008. Effect of carbon and nitrogen sources on phosphate solubilisation by a wild type strain and UV-induced mutants of Aspergillus tubigensis. Curr. Microbiol. 57:401-406.   DOI
11 Reyes, I., L. Bernier, and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol. 44:39-48.   DOI   ScienceOn
12 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
13 Saleena, L.M., S. Rangarajan, and S. Nair. 2002. Diversity of Azospirillum strains isolated from rice plants grown in saline and nonsaline sites of coastal agricultural ecosystem. Microb. Ecol. 44:271-277.   DOI   ScienceOn
14 SAS (1999). SAS/STAT User's Guide Version 8. SAS, Cary, NC.
15 Scervino, J.M., M.P. Mesa, I.D. Monica, M. Recchi, N.S. Moreno, and A. Godeas. 2010. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol. Fertil. Soils. 46:755-763.   DOI   ScienceOn
16 Schwyn, R. and J.B. Neilands. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160:47-56.   DOI   ScienceOn
17 Costa, E., J.Usall, N.Teixido, J. Delgado, and I. Vinas. 2002. Water activity, temperature, and pH effects on growth of the biocontrol agent Pantoea agglomerans CPA-2. Can. J. Microbiol. 48:987-992.
18 Cappucino, J.C. and N. Sherman. 1992. Microbiolgy: A laboratory manual. Benjamin/Cummings Publishing Company, New York, pp. 125-179.
19 Cimmino, A., A. Andolfi, G. Marchi, G. Surico, and A. Evindente. 2006. Phytohormone production by strain Pantoea agglomerans from knot on olive plants caused by Pseu-domonas savastanoi pv.savastanoi. Phytopathol. Mediterr. 45:247-252.
20 Collavino, M.M., P.A. Sansberro, L.A. Mroginski, and O.M. Aguilar. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol. Fert. Soils. 46:727-738.   DOI
21 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882.   DOI   ScienceOn
22 Silini-Cherif, H., A. Silini, M. Ghoul, and S. Yadav. 2012. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans Ima2. Pakistan J. Biol. Sci. 15:267-276   DOI
23 Son, H.J., G.T. Park, M.S. Cha, and M.S. Heo. 2006. Solubilization of insoluble inorganic phosphates by a novel salt and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 97:204-210.   DOI   ScienceOn
24 Souchie, E.L., O.J. Saggin-Junior, E.M.R. Silva, E.F.C. Campello, R. Azcon and J.M. Barea. 2006. Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ-Brazil. An Acad. Bras. Cienc. 78:1-11.   DOI
25 Viruel, E., M.E. Lucca, and F. Sineriz. 2011. Plant growth promotion traits of phosphobacteria isolated from puna, Argentina. Arch. Microbiol. 193:489-496   DOI   ScienceOn
26 Viveros, O.M., M.A. Jorquera, D.E. Crowley, G. Gajardo, and M.L. Mora. 2010. Mechanism and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. plant Nutr. 10:293-319.
27 Zaidi, A., M.S Khan, and M.D. Amil. 2003. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur. J. Agron. 19:15-21.   DOI   ScienceOn
28 Donate-Correa, J., M. Leon-Barrios and R. Perez-Galdona. 2005. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil. 266:261-272.   DOI
29 Dastager, S.G., C.K. Deepa1, S.C. Puneet, C.S. Nautiyal, and A. Pandey. 2009. Isolation and characterization of plant growth-promoting strain Pantoea NII-186 from Western Ghat forest soil, India. Lett. Appl. Microbiol. doi:10.1111/j.1472-765X.2009.02616.x   DOI   ScienceOn
30 Dave, A. and H.H. Patel. 2003. Impact of different carbon and nitrogen sources on phosphate solubilization by Pseudomonas fluorescens. Indian J. Microbiol. 43:33-36.
31 Feng, Y., D. Shen, and W. Song. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and effects allocations of host photosynthates. J. App. Microbiol. 100:938-945.   DOI   ScienceOn
32 Gutierrez, C.K., G.Y. Matsui, D.E. Lincoln, and C.R. Lovell. 2009. Production of the phytohormone indole-3-acetic acid by the estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75:2253-2258.   DOI   ScienceOn
33 Jain, R., J. Saxena, and V. Sharma. 2010. The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil-plant system. Appl. Soil Ecol. 46:90-94.   DOI   ScienceOn
34 Kausar, R. and S.M. Hahzad. 2006. Effect of ACC-deaminase Containing Rhizobacteria on Growth Promotion of Maize under Salinity Stress. J. Agri. Soc. Sci. 2:216-218.
35 Khalim, K., D.N. Suprapta, and Y. Nitta. 2012. Effect of Pantoea agglomerans on growth promotion and yield of rice. Agric. Sci. Res. J. 2:240-249.