• Title/Summary/Keyword: bio-gasification

Search Result 26, Processing Time 0.033 seconds

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Fig Manure and Food Waste(I): (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(I): 현장조사 결과 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.91-100
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 13 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of bio-gasification treatment. Consequently, major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas and pretreatment of hydrogen sulfide.

A Kinetic Study of Steam Gasification of Rice Straw, Saw Dust Biomass and Coal (볏집, 톱밥 바이오매스와 석탄의 수증기 가스화반응 Kinetics 연구)

  • Song, Byungho;Zhu, Xueyan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • Biomass and coal are great potential energy sources for gasification process. These solids can be gasified to produce syngas and bio-oil which can be upgraded further to transportation fuel. Two biomass and three coals have been gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information The effects of gasification temperature ($600{\sim}850^{\circ}C$) and partial pressure of steam (30~90 kPa) on the gasification rate have been investigated. The three different types of gas-solids reaction models have been applied to the experimental data to compare their predictions of reaction behavior. The modified volumetric reaction model predicts the conversion data well, thus that model was used to evaluate kinetic parameters in this study. The gasification reactivity of five solids has been compared. The obtained activation energy of coal and biomass gasification were well in the reasonable range. The expression of apparent reaction rates for steam gasification of five solids have been proposed as basic information for the design of coal gasification processes.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

The Gasifier Operation Method using Bio Gas (바이오가스를 이용한 가스화기 운전 방안)

  • Lee, Joongwon;Joo, Yongjin;Chung, Jaehwa;Park, Seik;Kim, Uisik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.249-254
    • /
    • 2013
  • The integrated gasification combined cycle (IGCC) system is well known for its high efficiency compared with other coal fueled power generation system. The aim of this study is to confirm the feasibility of using bio gas in coal feeding system and syngas recirculation system. The effects of using bio gas in the gasifier on the syngas composition were investigated through simulations using the Aspen Plus process simulator. It was found that these changes had an influence on the syngas composition of the final stream and bio gas can be used in a gasifier system.

Realization of Zero Waste Clean City to Low Carbon Green Growth (저탄소 녹색 성장을 위한 폐기물 제로 청정도시 구상)

  • Oh, Jeong-Ik;Ahn, Soo-Jeung;Kim, Jong-Yeob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Zero waste clean city was visualized by designing the environmental fundamental facilities such as automated waste collection and bio-energizing system of domestic waste, which was categorized into food and combustible waste from urban area. The biomass circulation position was applied to the domestic waste collection position combined with bio-energizing system in the zero waste clean city. Bio-energizing system consisted of bio-gasification, bio-fuel and bioenergy-circulation process. Food wastes were treated by bio-gasification with anaerobic digestion, and combustible wastes were made of bio-fuel with pyrolysis/drying. Biogas and bio-fuel was utilized into the electric generation or boiler heat in bioenergy-circulation process. The emission of carbon dioxide(CO2) and construction fee of the environmental fundamental facilities related with domestic waste was estimated in the existing city and zero waste clean city, assuming the amount of food waste 35 ton/day, combustible waste 20 ton/day from domestic area. Consequently, 2.7 times lower carbon dioxide emission and 15% construction fee of the environmental fundamental facilities related with domestic waste were obtained from the zero waste clean city by comparing with existing city.

Synthesis Gas Production from Gasification of Woody Biomass (목질계 바이오매스로부터 가스화에 의한 합성가스 제조 연구)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Baek, Young-Soon;Kim, Seung-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.587-594
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas has played an important role of synthesizing the valuable chemical compounds, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuel and chemicals. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C$/min in thermogravimetric analysis. Bubbling fluidized bed reactor was used to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, $CO_2$, $H_2$ and a small fraction of $C_1-C_4$ hydrocarbons.

Development of Innovation DME Process from Natural Gas and Biomass in KOREA (천연가스와 바이오매스로부터 개선된 DME 공정의 개발)

  • Cho, Wonjun;Song, Taekyong;Baek, Youngsoon;Kim, Seung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.107-107
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas have played an important role of synthesizing the valuable chemical compound, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuels and chemical production. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C/min$ in thermogravimetric analysis. Bubbling fluidized bed reactor were use to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, CO2, H2 and a small fraction of C1-C4 hydrocarbons.

  • PDF

Development Status of BTL (Biomass to Liquid) Technology (BTL(Biomass to Liquid) 기술 현황)

  • Chae, Ho-Jeong;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-92
    • /
    • 2007
  • In view of stringent environment regulations to control the emission of green house gases and also depleting fossil fuel reserves, it is high quality desirable to develop alternative technologies to produce high quality fuels. To this end Biomass to Liquid (BTL) technology has received much attention in recent years. BTL process generally consists of gasification of biomass to produce bio-syngas, cleaning and control of $H_{2}/CO$ mole ratio of bio-syngas and Fischer-Tropsch synthesis & upgrading systems. Choren, Germany has first developed the commercial BTL process using unique gasification system i.e., Carbo-V. A new technology to remove tars and BTX has been developed by ECN in Netherlands employing a gasification system combined with OLGA technology. Several other countries including USA and Japan are showing great interest in BTL technology. Thus in view of our national energy security and also the environmental regulations, it is essential to develop alternative technologies like BTL in order to meet the increasing demand of energy though our insufficient biomass resources. In this paper we present an overview and development status of BTL-diesel technology.

Review of the 21th Energy (21세기의 에너지에 관한 고찰)

  • Lee, Hyun-Hwa
    • Journal of the Korean Professional Engineers Association
    • /
    • v.39 no.5 s.188
    • /
    • pp.20-24
    • /
    • 2006
  • The energy of 97% consumed by our country depends on it's import from foreign market. This article covers hydrogen, fuel-cell, coal liquefaction gasification energy, and solar, wind, photovoltaic, hydro power, ocean, waste, geothermal, bio energy that is renewable energy, and so on, which are new-generation energy sources, increasing the concern on new & renewable source of enenrgy in future.

  • PDF