• Title/Summary/Keyword: bio-fertilizer

Search Result 386, Processing Time 0.023 seconds

Investigation of an Optimum Application Rate of Blended Biochar Pellet as Slow Release Fertilizer during Cabbage Cultivation (배추재배 시 바이오차 펠렛 완효성 비료의 적정 시용량 구명)

  • Kim, HuiSeon;Yun, SeokIn;Jang, Eunsuk;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • This experiment was conducted to select an optimum application rate of blended biochar pellet as slow release fertilizer during cabbage cultivation. The blended biochar pellet made with a combination(4:6) of biochar and pig manure compost with unloading N, P, K solutions for adjusting about 9% of total nitrogen(TN). The treatments were consisted of the control as recommended application rates for cabbage cultivation in National Institute of Agricultural Sciences, N 40%, N 40% and 0.07M MgO and N 60 % of the blended biochar pellet, respectively, based on nitrogen application of recommended rates to cabbage cultivation. Changes of $NH_4-N$, $NO_3-N$, $P_2O_5$ and $K_2O$ concentrations in the soil and growth characteristic and yield components were investigated and observed during the cabbage cultivation. The experimental result shown that contents of $NH_4-N$, $NO_3-N$ and $K_2O$ of soil in the N 40% were significantly difference(p<0.01) with the control. $P_2O_5$ concentrations of soil in the N 40% were highest among the treatments. The fresh weight per cabbage in the N 40% was not significantly different(p>0.05) from the control, but in the N 40% and 0.07M MgO and N 60% was lower than that of the control. It was considered that an optimum blended biochar application rate for cabbage cultivation was 40% of recommended nitrogen application.

Diagnosis of Nitrogen Content in the Leaves of Apple Tree Using Spectral Imagery (분광 영상을 이용한 사과나무 잎의 질소 영양 상태 진단)

  • Jang, Si Hyeong;Cho, Jung Gun;Han, Jeom Hwa;Jeong, Jae Hoon;Lee, Seul Ki;Lee, Dong Yong;Lee, Kwang Sik
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2022
  • The objective of this study was to estimated nitrogen content and chlorophyll using RGB, Hyperspectral sensors to diagnose of nitrogen nutrition in apple tree leaves. Spectral data were acquired through image processing after shooting with high resolution RGB and hyperspectral sensor for two-year-old 'Hongro/M.9' apple. Growth data measured chlorophyll and leaf nitrogen content (LNC) immediately after shooting. The growth model was developed by using regression analysis (simple, multi, partial least squared) with growth data (chlorophyll, LNC) and spectral data (SPAD meter, color vegetation index, wavelength). As a result, chlorophyll and LNC showed a statistically significant difference according to nitrogen fertilizer level regardless of date. Leaf color became pale as the nutrients in the leaf were transferred to the fruit as over time. RGB sensor showed a statistically significant difference at the red wavelength regardless of the date. Also hyperspectral sensor showed a spectral difference depend on nitrogen fertilizer level for non-visible wavelength than visible wavelength at June 10th and July 14th. The estimation model performance of chlorophyll, LNC showed Partial least squared regression using hyperspectral data better than Simple and multiple linear regression using RGB data (Chlorophyll R2: 81%, LNC: 81%). The reason is that hyperspectral sensor has a narrow Full Half at Width Maximum (FWHM) and broad wavelength range (400-1,000 nm), so it is thought that the spectral analysis of crop was possible due to stress cause by nitrogen deficiency. In future study, it is thought that it will contribute to development of high quality and stable fruit production technology by diagnosis model of physiology and pest for all growth stage of tree using hyperspectral imagery.

Effect of Incorporation Times of Green Barley and Hairy Vetch on Rice Yield in Paddy Soil with Liquid Pig Manure (돈분액비를 시용한 녹비보리 및 헤어리베치의 혼입시기가 벼 수량에 미치는 영향)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Ryu, Jin-Hee;Kim, Min-Tae;Kang, Hang-Won;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • BACKGROUND: Soil incorporation of green manure crop(GMC) and liquid pig manure(LPM) is one of the methods for reduction of chemical fertilizer and the increase of crop yield. The objective of this study was to select optimal incorporation time of GMCs on growth and nutrient property in paddy soil treated LPM. METHODS AND RESULTS: The kinds of GMCs were Hordeum vulgare L.(green barley, GB) and Vicia villosa roth(hairy vetch, HV). The effects of GMCs on rice yield were investigated under different incorporation times of GMCs(LPM1: at 25 days before rice transplantation, LPM2: at 18 days before rice transplantation, LPM3: at 11 days before rice transplantation). In GB treatments, the biomass was greater in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Contents of N, P and K ranged 1.21~1.28, 0.36~0.38 and 1.41~1.45%, respectively, regardless of incorporation times. The amounts of nutrient supply in GB treatments were higher in LPM1 than those in other treatment conditions. In GB treatments, rice yields in LPM1, LPM2 and LPM3 were 523, 525 and 526(increasing yield 3% than control) kg/10a, respectively. In HV treatments, the amounts of nutrient supply were higher in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Rice yields were 530 kg/10a for LPM1, 531 kg/10a for LPM2, 535 (increasing yield 5% than control) kg/10a for LPM3 in HV treatments, respectively. CONCLUSION(s): The optimum incorporation time of green barley and hairy vetch was at 11 days before rice transplantation(LPM3) in paddy soil with liquid pig manure.

Effects of Initial Shoot, Root Length, and Acclimating Substrates on Survival Rate of Plantlets Regenerated from Somatic Embryos of Larix kaempferi (일본잎갈나무 체세포배 유래 식물체의 초기 신초와 뿌리 길이, 순화용 기질이 생존율에 미치는 영향)

  • Lee, Na Nyum;Yun, A Young;Kim, Ji Ah;Kim, Tae Dong;Kim, Yong Wook;Han, Sim Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • We analyzed the growth characteristics of each cell line and acclimating substrate of Larix kaempferi plantlets regenerated from somatic embryos, with the goal of increasing the survival rate during the acclimation phase. Somatic embryos from three embryogenic cell lines (L14-66, L16-18, and L17-B4) were used, and the acclimating substrates were commercial soils for Larix species (Larix-Soil) and horticultural corps (Hort-Soil), Elle-pot, and Peat-plug. The average initial shoot and root length was shortest in L14-66 and longest in L17-B4. The average survival rate by cell line was highest (87.0%) in L17-B4 and lowest (64.3%) for L14-66. Survival rates by substrate were highest in Elle-pot (88.5%) and Peat-plug (88.9%). The initial shoot length of the L14-66 plantlets was highly correlated with survival rates in the Larix-Soil (r = 0.852), Hort-Soil (r = 0.692), and Elle-pot (r = 0.867) substrates, but not in Peat-plug with high total nitrogen content. The initial shoot length of the L17-B4 plantlets was not correlated with the survival rate in any of the substrates. The initial root length of the L14-66 plantlets was highly related to survival rates in the Larix-Soil (r = 0.986), Elle-pot (r = 0.846), and Peat-plug (r = 0.802) substrates, and the survival rate of the plantlets was higher as the initial root length was longer. The initial root length of the L17-B4 plantlets was related to survival rate only in the Larix-Soil (r = 0.896) and Elle-pot (r = 0.696) substrates. In conclusion, to increase the survival rate of plantlets, root length should be considered over shoot length, and it is recommended to use substrates with high nitrogen content, such as Peat-plug, or to add fertilizer, during the acclimating process. In addition, in order to increase the survival rate, lines with high initial growth should be developed.

Growth Characteristics and Germanium Absorption of Brasica juncea C. with Different Types of Germanium Compounds in Hydroponic Cultivation (게르마늄 종류별 양액재배시 갓의 생육특성 및 게르마늄 흡수)

  • Kang, Se-Won;Seo, Dong-Cheol;Jeon, Weon-Tai;Kang, Seok-Jin;Lee, Seong-Tae;Sung, Hwan-Hoo;Choi, Ik-Won;Kang, Ui-Gum;Kim, Hyun-Ook;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.465-472
    • /
    • 2011
  • To investigate the effect of inorganic ($GeO_2$) and organic (Ge-132) germanium treatment on Brasica juncea C. plant, growth characteristics and Ge contents were examined with various inorganic or organic germanium treatments (0, 5, 10, 25, 50, 75 and $100mg\;L^{-1}$), respectively. Brasica juncea C. growth did not much inhibited until Ge $10mg\;L^{-1}$ concentration under both Ge-132 and $GeO_2$ treatments as compared to control. On the other hand, at Ge concentration higher than $25mg\;L^{-1}$ concentration, Brasica juncea C. growth was inhibited under both Ge-132 and $GeO_2$ treatments. Under treatment of $GeO_2$, length of root and shoot slightly increased until $5mg\;L^{-1}$ concentration and dry weight slightly increased until $10mg\;L^{-1}$ concentration. Under treatment of Ge-132, length of root and shoot slightly increased until $10mg\;L^{-1}$ concentration and dry weight slightly increased until $25mg\;L^{-1}$ concentration. Total Ge contents in Brasica juncea C. early seedlings with $GeO_2$ treatment were a bit higher than those with Ge-132 treatment. Germanium was primarily accumulated in the roots (77%) with organic Ge (Ge-132) treatments, whereas Ge was primarily accumulated in the leaf (70%, respectively) with $GeO_2$ treatments. The Ge uptake rates in inorganic Ge treatments were slightly high than those in organic Ge treatments. Under inorganic Ge treatment with $2.5mg\;L^{-1}$, about 3% of Ge was accumulated into plant and distribution in leaf and root was 84.8% and 15.2%, respectively. Under organic Ge treatment with $2.5mg\;L^{-1}$, about 2.6% of Ge was accumulated into plant and distribution in leaf and root was 66.4% and 33.6%, respectively.

Evaluation of Aquatic Ecological Characteristics in Sinpyongcheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 신평천 인공습지의 수생태학적 특성 평가)

  • Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Chang, Nam-Ik;Seong, Hwan-Hoo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.400-407
    • /
    • 2011
  • To evaluate the aquatic ecological characteristics in Sinpyongcheon constructed wetlands for treating nonpoint source pollution, the removal rates of nutrients in water, the total amounts of T-N and T-P uptakes by water plants, and chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD, COD, SS, T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were 14%, 6%, 18%, 24%, and 10%, respectively. The maximum amount of T-N uptake by water plants in August was $813mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $1,172mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. The maximum amount of T-P uptake by water plants in August was $247mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $359mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. Organic matter, T-N, and T-P contents in sediments were high in the order of $1^{st}$ bed > $2^{nd}$ bed > $3^{rd}$ bed. Microbial biomass C/N/P ratios in sediments in $1^{st}$, $2^{nd}$, and $3^{rd}$ were 78~110/3~6/1, 73~204/1~6/1, and 106~169/1~6/1, respectively.

Manufacturing Fermented Rapeseed Meal Compost using Two Microbial Agents and the Effect of Their Application (유용 미생물 제제 이용 발효 유채박 비료 제조 및 시용 효과)

  • Lee, Ji-Eun;Park, Won;Kim, Kwang-Soo;Lee, Yong-Hwa;Kwon, Da-Eun;Moon, Youn-Ho;Cha, Young-Lok;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • Rapeseed meal, which is a byproduct of rapeseed oil extraction, improves crop productivity by supplying nutrients to the soil. The present study aimed to manufacture fermented rapeseed meal compost using two effective microbial agents and evaluate their efficiency as fertilizer. To types of fermented rapeseed meal, manufactured using either a bio-carrier or microbial agent, showed no differences in pH, electrical conductivity (EC), and total nitrogen content. However, the contents of $NH_4-N$ and $NO_3-N$ as inorganic nitrogen were increased by 5.6 times and 1.5 times, respectively, after 5 d of fermentation. Rapeseed meal fermented for 5 d was applied to tomato a basal fertilizer and after eight weeks, the plant height increased in all fermented rapeseed treatments compared to that in the chemical fertilizer treatment, and also the quantum yield of photosystem II (PS II) showed the same trend. The total nitrogen content of tomato leaves treated with a microbial fermented rapeseed meal was twice as high as that of that treated with a chemical fertilizer. It was confirmed that the increase in the tomato height was an effect of the rapeseed meal containing inorganic nitrogen, which can easily be absorbed by plants. From these results, it is considered that fermented rapeseed meal manufactured with an effective microbial agent for 5 d showed the highest inorganic nutrient content and greatest growth enhancement in tomato.

The Measurement of Biochemical Methane Potential in the Several Organic Waste Resources (유기성 폐자원별 메탄 생산 퍼텐셜 측정 연구)

  • Kim, Seung-Hwan;Kim, Hyun-Cheol;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.356-362
    • /
    • 2010
  • This research studied the bio-methane potential of several waste biomass materials as alternative sources for biogas production, and the laboratory procedure for measuring the biochemical methane potential was described. The wastes from four agro-industries (sewage, livestock, food wastewater treatment sludge and cattle rumen substance generating in slaughter house) were evaluated as substrates for the assay of biochemical methane potential. In order to estimate the ultimate methane yield, two empirical equations (modified Gompertz equation and exponential equation) was investigated. The ultimate methane yield of sewage, livestock, food sludge and lumen substance estimated by the modified Gompertz equation were 0.086, 0.147, 0.146, and 0.121 L $CH_{4}\;g^{-1}\;VS_{added}$, respectively. The ultimate methane yield estimated by the exponential equation were 0.109, 0.246 and 0.174 L $CH_{4}\;g^{-1}\;VS_{added}$ in sewage, livestock sludge and lumen substance. And the ultimate methane yield estimated by the exponential equation showed more high values in the range of 26.7 ~67.3% than the ultimate methane yield estimated by the modified Gompertz equation.

Studies on Phytotoxin in Intensively Cultivated Upland Crops -I. Identification of phytotoxin in soil and effects of phytotoxin application to the toxicity of hot-pepper plant (연작재배지토양(連作栽培地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) -제(第)1보(報) 토양중(土壤中) 식물독소(植物毒素)의 분리정량(分離定量) 및 식물독소(植物毒素) 첨가(添加)가 고추 유식물(幼植物)에 미치는 영향(影響))

  • Lee, Sang Kyu;Suh, Jang Sun;Kim, Young Sig;Park, Jun Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.63-67
    • /
    • 1987
  • A laboratory experiment was conducted to find out the concentration of phytotoxin in intensively cultivated hot-pepper, garlic and chinese cabbage, and effects of these phytotoxin to the germination and growth of young hot-pepper plant. Also this experiment presents describes of the bio-assay method and results of phytotoxin application to the toxicity of hot-pepper plant. The results obtained were summarized as follows; 1. A series of non-volatile (aromatic) phenolic compounds such as hydroquinone, benzoic-, p-hydroxybenzoic, and vanillic acid were quantitatively and qualitatively analysed using BSA(N, O-bis(trimethylsilyl)acetamide) by means of gas chromatography method. 2. Phytotoxin as hydroquinone, benzoic-, p-hydroxybenzoic- and vanillic acid were determined in intensively cultivated hot- pepper, garlic and chinese cabbage. Highest concentration of phytotoxin was obtained in hot-pepper cultivated soil. 3. Direct toxic action of the applied phytotoxin to the germination and young hot-pepper plant growth was observed at the levels of 200 ppm. Benzoic acid was obtained the highest toxicity to the young hot-pepper plant growth. 4. Mode of actions of phytotoxins to the young hot-pepper plant growth were observed as stunting of stem elongation, discoloration of leaf and oxygen depletion from consideration as causes of symptom.

  • PDF

Effect of Rice Straw Application on Yield of Whole Crop Barley and Change in Soil Properties under Upland Condition in Saemangeum Reclaimed Tidal Land

  • Lee, Su-Hwan;Shin, Pyeong;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yeol;Lee, Sang-Hun;Rho, Tae-Hwan;Song, Beom-Heon;Cho, Jae-Yeong;Lee, Kyoung-Bo;Lee, Keon-Hui;Park, Ki-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.586-593
    • /
    • 2014
  • Newly reclaimed tidal land is known to be in low status of soil fertility. The incorporation of crop residue is an effective method to improve soil properties and fertility in reclaimed saline soils. The objective of this study was to evaluate the efficiency of rice straw (RS) application to improve physico-chemical properties of saline-sodic soil and its contribution to productivity of whole crop barley. Increasing rate of rice straw improved growth parameter related to yield of whole crop barley, which increased tiller number significantly (p<0.05).The yield increased by 15% (F.W) and 9% (D.W) in rice straw-amended plots. The content of soil organic matter (SOM) in the surface soil (0-20cm) with rice straw incorporation increased by 5~9% (RS 2.5~RS 7.5) compared to RS 0, in which the content of SOM decreased after two consecutive cultivations. Rice straw incorporation promoted soil physico-chemical properties and nutrient-availability of the test crop, as indicated in change in soil bulk density, porosity and increased nutrient uptake of plant. Especially, the P content and uptake of whole crop barley increased with increasing the rate of rice straw application. In conclusion, the rice straw application at rates of $5.0-7.5ton{\cdot}ha^{-1}$ in reclaimed saline soils effectively improved soil properties and crop productivity, which has potentials to reduce the loss of chemical fertilizers and facilitate the favorable condition for crop growth under adverse soil condition.