DOI QR코드

DOI QR Code

Investigation of an Optimum Application Rate of Blended Biochar Pellet as Slow Release Fertilizer during Cabbage Cultivation

배추재배 시 바이오차 펠렛 완효성 비료의 적정 시용량 구명

  • Kim, HuiSeon (National Academy of Agricultural Science, Rural Development administration, Department of Bio-Environmental Chemistry, Wonkwang University) ;
  • Yun, SeokIn (Department of Bio-Environmental Chemistry, Wonkwang University) ;
  • Jang, Eunsuk (Department of Climate Change and Agro-ecology, National Institute of Agricultural Sciences) ;
  • Shin, JoungDu (Department of Climate Change and Agro-ecology, National Institute of Agricultural Sciences)
  • 김희선 (국립농업과학원 기후변화생태과 대학원, 원광대학교 생물환경화학과 대학원) ;
  • 윤석인 (원광대학교 생물환경화학과) ;
  • 장은숙 (국립농업과학원 기후변화생태과) ;
  • 신중두 (국립농업과학원 기후변화생태과)
  • Received : 2019.03.05
  • Accepted : 2019.03.21
  • Published : 2019.03.30

Abstract

This experiment was conducted to select an optimum application rate of blended biochar pellet as slow release fertilizer during cabbage cultivation. The blended biochar pellet made with a combination(4:6) of biochar and pig manure compost with unloading N, P, K solutions for adjusting about 9% of total nitrogen(TN). The treatments were consisted of the control as recommended application rates for cabbage cultivation in National Institute of Agricultural Sciences, N 40%, N 40% and 0.07M MgO and N 60 % of the blended biochar pellet, respectively, based on nitrogen application of recommended rates to cabbage cultivation. Changes of $NH_4-N$, $NO_3-N$, $P_2O_5$ and $K_2O$ concentrations in the soil and growth characteristic and yield components were investigated and observed during the cabbage cultivation. The experimental result shown that contents of $NH_4-N$, $NO_3-N$ and $K_2O$ of soil in the N 40% were significantly difference(p<0.01) with the control. $P_2O_5$ concentrations of soil in the N 40% were highest among the treatments. The fresh weight per cabbage in the N 40% was not significantly different(p>0.05) from the control, but in the N 40% and 0.07M MgO and N 60% was lower than that of the control. It was considered that an optimum blended biochar application rate for cabbage cultivation was 40% of recommended nitrogen application.

본 연구의 목적은 배추재배 시 바이오차 펠렛 완효성 비료의 적정 시용량 구명을 위해 수행하였다. 바이오차 팰릿 완효성 비료는 돈분과 바이오차 혼합비(6 : 4)로 조제한 후 N : P : K 용액을 추가하여 총 질소 함량이 약 9%가 되도록 조제하였다. 본 시험의 처리는 대조구, 추천 질소 시비량의 바이오차 펠렛 완효성 비료 질소기준 40%(N 40%), 바이오차 펠렛 완효성 비료 질소기준 40% + 0.07M MgO(N 40% + 0.07M MgO)와 바이오차 펠렛 완효성 비료 질소기준 60%(N 60%) 시용구로 구성되어있다. 배추의 생육기간동안 토양 중 $NH_4-N$, $NO_3-N$, $P_2O_5$, $K_2O$의 농도 변화를 분석하였다. 실험 결과로서 토양중의 $NH_4-N$, $NO_3-N$, $K_2O$ 함량은 대조구와 비교하여 N 40%처리구가 유의차를 보였다. 토양 중의 $P_2O_5$농도는 바이오차 팰릿 완효성 비료의 처리구들 중 N 40%가 가장 높았다. 배추의 생체중은 N 40% 처리구는 대조구와 비교하여 유의적인 차이가 나지 않았으며(p>0.05), N 40% + 0.07M MgO 처리구와 N 60% 처리구는 대조구에 비해 감소하였다. 농경지에서 배추재배 시 추천 질소 시비량 기준의 N 40%가 적정 시용량이라 판단된다.

Keywords

DOGSBE_2019_v27n1_49_f0001.png 이미지

Fig. 1. Changes of NH4-N and NO3-N concentrations in the soil for the different treatments during cabbage cultivation. DAT; days after transplanting. Results are the mean of triplicates samples and error bars indicate standard deviation.

DOGSBE_2019_v27n1_49_f0002.png 이미지

Fig. 2. Changes of P2O5 concentrations in the soil for the different treatments during cabbage cultivation. DAT; days after transplanting. Results are the mean of triplicates samples and error bars indicate standard deviation.

DOGSBE_2019_v27n1_49_f0003.png 이미지

Fig. 3. Changes of K2O concentrations in the soil for the different treatments during cabbage cultivation. DAT; days after transplanting. Results are the mean of triplicates samples and error bars indicate standard deviation.

DOGSBE_2019_v27n1_49_f0004.png 이미지

Fig. 4. Comparsions of cabbage growth responses to different treatments.

Table 1. Chemical Properties of the Soil Before Experiment

DOGSBE_2019_v27n1_49_t0001.png 이미지

Table 2. Chemical Components of Biochar and Pig Manure Compost*

DOGSBE_2019_v27n1_49_t0002.png 이미지

Table 3. Cabbage Growth Responses to the Treatments

DOGSBE_2019_v27n1_49_t0003.png 이미지

References

  1. Lee, C. G., Lee, S. L., Joo, S. Y., Cho, L. H., Park, S. Y., Lee, S. H., Oh, K. C., and Kim, D., "A Study on Agricultural by-products for Biomass-to-energy Conversion and Korean Collecting Model", New & Renewable Energy, 13(1), pp. 27-35. (2017). https://doi.org/10.7849/ksnre.2017.3.13.1.027
  2. Park, S. J., Kim, M. H., and Shin, H. M., "Chemical Compositions and Thermal Characteristics of Rice Husk and Rice Husk Ash in Korea", J. of Biosystems Eng., 30(4), pp. 235-241. (2005). https://doi.org/10.5307/JBE.2005.30.4.235
  3. Woo, S. H., "Biochar for soil carbon sequestration", Clean Technology., 19(3), pp. 201-211. (2013). https://doi.org/10.7464/ksct.2013.19.3.201
  4. Kim, M. H., and Kim, G. H., "Analysis of environmental impacts for the biochar production and soil application", J. Kor. Soc. Enviroon. Eng., 36(7), pp. 461-468. (2014). https://doi.org/10.4491/KSEE.2014.36.7.461
  5. Lim, T. J., Hong, S. D., Kang, S. B., and Parkk, J. M., "evaluation of the Preplant optimum application rates of pig slurry composting biofiltration for chinese cabbage", Kor. J. Hort. Sci. Technol., 27(4), pp. 572-577. (2009).
  6. Yoo, G. Y., Son, Y. G., Lee, S. H., Lee, Y. Y. and Lee, S. H., "Greenhouse gas emissions form soils amended with biochar", Kor. J. Environ. Biol., 31(4), pp. 471-477. (2013). https://doi.org/10.11626/KJEB.2013.31.4.471
  7. Lee, J. H., Seong, C. J., Kang, S. S., Lee, H. C., Kim, S. H., Lim, J. S., Kim, J. H., Yoo, J. H., Park, J. H., and Oh, T. K., "Effect of different types of biochar on the growth of chinese cabbage", Korean Journal of Agricultural Science, 45(2), pp. 197-203. (2018). https://doi.org/10.7744/KJOAS.20180033
  8. Oh, T. K., Lee, J. H., Kim, S. H., and Lee, H. C., "Effect of biochar application on growth of Chinese cabbage (Brassica chinensis)", KJOAS, 44(3), pp. 359-365. (2017).
  9. Kang, S. W., Kim, S. H., Park, J. H., Seo, D. C., and Cho, J. S., "Selection of optimal application condition of corn waste biochar for improvement of corn growth and soil fertility", Kor. J. Soil. Sci. Fert., 50(5), pp. 452-461. (2017). https://doi.org/10.7745/KJSSF.2017.50.5.452
  10. Shin, J. D., and Park, S. W., "Optimization of blended biochar pellet by the use of nutrient releasing model", Appl. Sci, 8(11), pp. 2274-2286. (2018). https://doi.org/10.3390/app8112274
  11. KREI (Korea Rural Economic Institute), Vegetables with leaf and root, Agricultural observation, 849, pp. 1-12. (2018).
  12. Oh, S. E., Son, J. S., Ok, Y. S., and Joo, J. H., "A modified methodology of salt removal through flooding and drainage in a plastic film house soil", Kor. J. Soil. Sci. Fert., 43(5), pp. 565-571. (2010).
  13. Lim, J. E., Kim, H. W., Jeong, S, H., Lee, S. S., Yoang, J. E., Kim, K. H., and OK, Y. S., "Characterization of burcucumber biochar and its poteneial as an adsorbent for veterinary antibiotics in water", J Appl Biol Chem, 57(1), pp. 65-72. (2014). https://doi.org/10.3839/jabc.2014.011