• Title/Summary/Keyword: bio-ceramic

Search Result 125, Processing Time 0.028 seconds

A study on application of eco-friendly follow-up process connected with livestock wastewater treatment plant using the upflow constructed wetland (가축분뇨처리시설과 연계한 상향류식 인공습지의 자연형 후속처리공정 적용방안에 관한 연구)

  • Choi, Hanna;Cho, Eunha;Kang, Hogeun;Park, Joohyun;Kang, Seonhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.359-370
    • /
    • 2015
  • This study developed an up-flow wetland providing either an eco-friendly follow-up process of medium-sized public treatment facility for livestock manure or a non-point source pollution controller near livestock farms. The four bench-scale up-flow wetlands were operated with four different bed media sets. The removal efficiencies of the wetland effluent for CODCr, TN, TP, SS were 35.2 %, 29.5 %, 31.2 % and 52.2 % for set 1(Blank, without reed, with bio-ceramic), 40.6 %, 43.4 %, 42.2 % and 55.4 % for set 2(with bio-reed & without bio-ceramic), 45.2 %, 48.7 %, 46.6 % and 66.3 % for set 3(with bio-reed & bio-ceramic), 32.9 %, 27.3 %, 29.3 % and 54.1 % for Set 4(with reed & bio ceramic), respectively. The set 3 condition having a mixture of bio-reed and bio-ceramic showed the highest efficiency in the bench-scale evaluation. This study suggests a mixture of bio-reed and bio-ceramic as suitable bed media in the construction of artificial wetlands near livestock farms. Soils including the bed media were monitored during the evaluation for trace elements. Soil analysis results were satisfied with the Korean Soil Contamination Standard. This study showed that the up-flow constructed wetland was feasible to treat the effluent livestock wastewater treatment facility.

Fabrication and Characterization of CdSe/ZnS-QDs Incorporated Microbeads for Ultra-sensitive Sensor Applications (양자점을 이용한 고감도 마이크로 비드의 제조 및 특성)

  • Lee, Dong-Sup;Lee, Jong-Chul;Lee, Jong-Heun;Koo, Eun-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • Compared with organic fluorophores, semiconductor quantum dots (QDs) have the better properties such as photostability, narrow emission spectra coupled to tunable photoluminescent emissions and exceptional resistance to both photo bleaching and chemical degradation. In this work, CdSe/ZnS QDs nanobeads were prepared by the incorporation of CdSe/ZnS QDs with mesoporous silica to use as the optical probe for detecting toxic and bio- materials with high sensitivity, CdSe/ZnS core/shell QDs were synthesized from the precursors such as CdO and zinc stearate with the lower toxicity than pyrotic precursors. The QD-nanobeads were characterized by transmission electron microscopy, FL microscopy, UV-Vis and PL spectroscopy, respectively.

Control of Glass Infiltration at the Al2O3/Glass/Al2O3 Interface

  • Jo, Tae-Jin;Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo;Cho, Yong-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.32-34
    • /
    • 2011
  • A zero-shrinkage sintering process in which the shrinkage of the x-y axis is controlled to be zero is in great demand due to the high integration trend in ceramic modules. Among the zero-shrinkage sintering processes available, the glass infiltration method proposed in the preliminary study with an $Al_2O_3/Glass/Al_2O_3$ structure is one promising method. However, problems exist in regard to the glass infiltration method, including partially incomplete joining between $Al_2O_3$ and glass layers due to the precipitate of Ti-Pb rich phase during the sintering process. Therefore, we wish to solve the de-lamination problems and suggest a mechanism for delamination and the solutions in the zero-shrinkage low temperature co-fired ceramic (LTCC) layers. The de-lamination problems diminished using the Pb-BSi-O glass without $TiO_2$ in Pb-B-Ti-Si-O glass and produced a very dense zero-shrinkage LTCC.

Zirconia Ceramic Powder Coating of Ti-6AI-4V by Laser Cladding (레이저 클래딩을 이용한 Ti-6AI-4V의 Zirconia 세라믹 분말 코팅)

  • Kang, Kyung-Ho;Kim, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.783-788
    • /
    • 2011
  • The recent development of bio-ceramic material is being studied in various bio-material engineering field. There are lots of technical difficulties because manufacturing or bonding technique are required bio-friendliness, cleanliness and persistence. Zirconia ceramic powder is cladded on Ti-6AI-4V metallurgically by laser cladding processing. Laser cladding system with powder feeding delivery is designed and manufactured for optimum processing condition. Increasing of manufacturing speed and good quality of clad layer are achieved by application of preheating of substrate before laser cladding. The thin dilution and good clad layer on the substrate are obtained for applications of bio-materials such as the dental materials and the articulated joints of human body.

The Synthesis and Characterization of Mesoporous Microbead Incorporated with CdSe/ZnS QDs (양자점이 고밀도화된 마이크로 비드의 제조 및 특성)

  • Lee, Ji-Hye;Hyun, Sang-Il;Lee, Jong-Huen;Koo, Eun-Hae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.657-663
    • /
    • 2012
  • The spherical mesoporous silica is synthesized and incorporated with CdSe/ZnS quantum dots(QDs) for preparing micro beads to detect toxic and bio-materials with high sensitivity. The spherical silica beads with the brunauer-emmett-telle(BET) average pore size of 15 nm were prepared with a ratio 1, 3, 5-trimethylbenzen, as a swelling agent, to the block-copolymer template surfactant of over 1 and under vigorous mixing condition. The surface of spherical mesoporous silica is modified using octadecylsilane for incorporating QDs. Based on photoluminescence(PL) spectra, the relative brightness of mesoporous silica beads incorporated with 10 nM of QDs is 79,000 times brighter than that of Rodamine 6 G.

Info-Convergence Ceramic Nanosystems

  • Jin, Wenji;Park, Dae-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.421-434
    • /
    • 2019
  • We face many fascinating and diverse challenges, the most important among which is to determine how to store a large amount of information with novel approaches. Info-convergence ceramic nanosystems, which combine ceramic materials science and information technology, may provide an attractive alternative. This review considers recent multidisciplinary advances in the development of info-convergence nanosystems based on ceramic materials and discusses various strategies under ceramic-based information systems with a special focus on materials and nanohybridization technologies. Ceramic materials have played diverse roles not only as the generic coding support, but also as the central coding substance. The review highlights the ceramic nanohybrid bio code and ceramic nanoparticle optical code for applications in tracking-and-traceability management, nano-forensics, anti-counterfeiting, and even communication, as well as the four steps of encoding, encrypting, decrypting, and decoding for the desired applications. Additionally, associated challenges, potential solutions, and perspectives for future developments in the field are discussed.

Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

  • Utneja, Shivani;Nawal, Ruchika Roongta;Talwar, Sangeeta;Verma, Mahesh
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage.

Effects of Various Acid Etching Methods on the Shear Bond Strength between Iithium Disilicate Ceramic and Composite Resin (다양한 산처리 방법이 lithium Disilicate 도재와 복합레진간의 전단결합강도에 미치는 영향)

  • Kang, Dae-Hyun;Bok, Won-Mi;Song, Jin-Won;Song, Kwang-Yeob;Ahn, Seung-Ggeun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.149-159
    • /
    • 2006
  • Statement of problem. Porcelain repair mainly involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studies extensively. Purpose. The objective of this study was to investigate the influence of composite resin and ceramic etching pattern on shear bond strength of Empress2 ceramic and observe the change of microstructure of ceramic according to etching methods. Material and methods. Eighty-five cylinder shape ceramic specimens (diameter 5mm, IPS Empress 2 core materials) embeded by acrylic resin were used for this study. The ceramic were specimens divided into sixteen experimental groups with 5 specimens in each group and were etched with phosphoric acid(37%, 65%) & hydrofluoric acid (4%, 9%) according to different etching times(30s, 60s, 120s 180s). All etched ceramic surfaces were examined morphologically using SEM(scanning electron microscopy). Etched surfaces of ceramic specimens were coated with silane (Monobond-S) & adhesive(Heliobond) and built up composite resin using Teflon mold. Accomplished specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed 1mm/min; the maximum load at fracture(kg) was recorded. Shear bond strength data were analyzed with one way ANOVA and Duncan tests.(P<.05) Results. Maximum shear bond strength was $30.07{\pm}2.41(kg)$ when the ceramic was etched with 4% hydrofluoric acid at 120s. No significant difference was found between phosphoric etchant group and control group with respect to shear bond strength. Conclusion. Empress 2 ceramic surface was not etched by phosphoric acid, but etched by hydrofluoric acid.

Fabrication of a metal-ceramic crown to fit an existing partial removable dental prosthesis using ceramic pressed to metal technique: a clinical report

  • Seo, Jae-Min;Ahn, Seung-Geun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.241-244
    • /
    • 2014
  • Fabricating a crown to retrofit an existing abutment tooth for a partial removable dental prosthesis (PRDP) is one of the most time-consuming and labor-intensive clinical procedures. In particular, when the patient is concerned with esthetic aspects of restoration, the task of fabricating becomes more daunting. Many techniques for the fabrication of all-metallic or metal-ceramic crowns have been discussed in the literature. This article was aimed to describe a simple fabrication method in which a retrofitting crown was fabricated for a precise fit using a ceramic-pressed-to-metal system.

Bio-Inspired Synthesis of a Silicate/PMMA Composite

  • Nam, Kyung Mok;Lee, Yoon Joo;Kwon, Woo Teck;Kim, Soo Ryong;Shin, Dong-Geun;Lim, Hyung Mi;Kim, Hyungsun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.7-10
    • /
    • 2014
  • Abalone shell is composed of 95 wt% $CaCO_3$ platelets and 5 wt% of a protein-rich organic matrix which acts as an adhesive layer, connecting aragonite tablets, thus maintaining the structural integrity of the composite. By mimicking abalone shell, we prepared a silicate plate/polymer nanocomposite by infiltrating PMMA between silicate layers and warm-pressing them at $200^{\circ}C$ for 1 h under 15 tons to make organic-inorganic composite materials. To examine the organic-inorganic composite materials after the warm-pressing procedure, the composite sample was analyzed with FE-SEM and TG. The bending strengths and densities of the composites prepared by a silicate plate and PMMA after the warm-pressing process were ~140 MPa and 1.5, respectively.