DOI QR코드

DOI QR Code

Info-Convergence Ceramic Nanosystems

  • Jin, Wenji (Department of Nano Materials Science and Engineering, Kyungnam University) ;
  • Park, Dae-Hwan (Department of Nano Materials Science and Engineering, Kyungnam University)
  • Received : 2019.06.01
  • Accepted : 2019.07.09
  • Published : 2019.09.30

Abstract

We face many fascinating and diverse challenges, the most important among which is to determine how to store a large amount of information with novel approaches. Info-convergence ceramic nanosystems, which combine ceramic materials science and information technology, may provide an attractive alternative. This review considers recent multidisciplinary advances in the development of info-convergence nanosystems based on ceramic materials and discusses various strategies under ceramic-based information systems with a special focus on materials and nanohybridization technologies. Ceramic materials have played diverse roles not only as the generic coding support, but also as the central coding substance. The review highlights the ceramic nanohybrid bio code and ceramic nanoparticle optical code for applications in tracking-and-traceability management, nano-forensics, anti-counterfeiting, and even communication, as well as the four steps of encoding, encrypting, decrypting, and decoding for the desired applications. Additionally, associated challenges, potential solutions, and perspectives for future developments in the field are discussed.

Keywords

References

  1. D. H. Park, S. J. Hwang, J. M. Oh, J. H. Yang, and J. H. Choy, "Polymer-Inorganic Supramolecular Nanohybrids for Red, White, Green, and Blue Applications," Prog. Polym. Sci., 38 [10-11] 1442-86 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.007
  2. J. M. Oh, D. H. Park and J. H. Choy, "Integrated Bio-Inorganic Hybrid Systems for Nano-forensics," Chem. Soc. Rev., 40 583-95 (2011). https://doi.org/10.1039/C0CS00051E
  3. D. H. Park, C. J. Han, Y. G. Shul, and J. H. Choy, "Avatar DNA Nanohybrid System in Chip-on-a-Phone," Sci. Rep., 4, Article number: 4879 (2014).
  4. H. Palneedi, M. Peddigari, G-T. Hwang, D-Y. Jeong, and J. Ryu, "High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook," Adv. Funct. Mater, 28 [42] 1803665 (2018). https://doi.org/10.1002/adfm.201803665
  5. D. H. Park, J. E. Kim, J. M. Oh, Y. G. Shul, and J. H. Choy, "DNA Core@Inorganic Shell," J. Am. Chem. Soc., 132 [47] 16735-36 (2010). https://doi.org/10.1021/ja105809e
  6. J. H. Choy, S. Y. Kwak, J. S. Park, Y. J. Jeong, and J. Portier, "Intercalative Nanohybrids of Nucleoside Monophosphates and DNA in Layered Metal Hydroxide," J. Am. Chem. Soc., 121 [6] 1399-400 (1999). https://doi.org/10.1021/ja981823f
  7. D. H. Park, J. Cho, O. J. Kwon, C. O. Yun, and J. H. Choy, "Biodegradable Inorganic Nanovector: Passive versus Active Tumor Targeting in siRNA Transportation," Angew. Chem. Int. Ed., 55 [14] 4582-86 (2016). https://doi.org/10.1002/anie.201510844
  8. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  9. S. Ishihara, P. Sahoo, K. Deguchi, S. Ohki, M. Tansho, T. Shimizu, J. Labuta, J. P. Hill, K. Ariga, K. Watanabe, Y. Yamauchi, S. Suehara, and N. Iyi, "Dynamic Breathing of $CO_2$ by Hydrotalcite," J. Am. Chem. Soc., 135 [48] 18040-43 (2013). https://doi.org/10.1021/ja4099752
  10. K. Schwab, "The Fourth Industrial Revolution," World Economic Forum, 2016.
  11. M. C. Roco and W. S. Bainbridge, "Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science," National Science Foundation, 2003.
  12. G. M. Church, Y. Gao, and S. Kosuri, "Next-Generation Digital Information Storage in DNA," Science, 337 [6102] 1628 (2012). https://doi.org/10.1126/science.1226355
  13. F. Akram, I. Haq, H. Ali, and A. T. Laghari, "Trends to Store Digital Data in DNA: An Overview," Mol. Biol. Rep., 45 [5] 1479-90 (2018). https://doi.org/10.1007/s11033-018-4280-y
  14. J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, and P. S. Doyle, "Universal Process-Inert Encoding Architecture for Polymer Microparticles," Nat. Mater., 13 524-29 (2014). https://doi.org/10.1038/nmat3938
  15. R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, "Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes," Angew. Chem. Int. Ed., 54 [8] 2552-55 (2015). https://doi.org/10.1002/anie.201411378
  16. J. H. Choy, J. M. Oh, M. Park, K. M. Sohn, and J. W. Kim, "Inorganic-Biomolecular Hybrid Nanomaterials as a Genetic Molecular Code System," Adv. Mater., 16 [14] 1181-84 (2004). https://doi.org/10.1002/adma.200400027
  17. D. Paunescu, M. Puddu, J. O. B. Soellner, P. R. Stoessel, and R. N. Grass, "Reversible DNA Encapsulation in Silica to Produce ROS-Resistant and Heat-Resistant Synthetic DNA 'Fossils'," Nat. Protoc., 8 [12] 2440-48 (2013). https://doi.org/10.1038/nprot.2013.154
  18. D. H. Park and J. H. Choy, "Emerging Strategies in Infohybrid Systems," Eur. J. Inorg. Chem., 2012 [32] 5145-53 (2012). https://doi.org/10.1002/ejic.201200785
  19. D. Paunescu, C. A. Mora, L. Querci, R. Heckel, M. Puddu, B. Hattendorf, D. Gunther, and R. N. Grass, "Detecting and Number Counting of Single Engineered Nanoparticles by Digital Particle Polymerase Chain Reaction," ACS Nano, 9 [10] 9564-72 (2015). https://doi.org/10.1021/acsnano.5b04429
  20. M. Puddu, D. Paunescu, W. J. Stark, and R. N. Grass, "Magnetically Recoverable, Thermostable, Hydrophobic DNA/Silica Encapsulates and Their Application as Invisible Oil Tags," ACS Nano, 8 [3] 2677-85 (2014). https://doi.org/10.1021/nn4063853
  21. M. S. Bloch, D. Paunescu, P. R. Stoessel, C. A. Mora, W. J. Stark, and R. N. Grass, "Labeling Milk along Its Production Chain with DNA Encapsulated in Silica," J. Agric. Food Chem., 62 [43] 10615-20 (2014). https://doi.org/10.1021/jf503413f
  22. B. Duong, H. L. Liu, L. Y. Ma, and M. Su, "Covert Thermal Barcodes Based on Phase Change Nanoparticles," Sci. Rep., 4, 5170 (2014). https://doi.org/10.1038/srep05170
  23. M. Wang, B. Duong, H. Fenniri, and M. Su, "Nanomaterials-based Barcode," Nanoscale, 7 [26] 11240-47 (2015). https://doi.org/10.1039/c5nr01948f
  24. S. H. Wen, J. J. Zhou, K. Z. Zheng, A. Bednarkiewicz, X. G. Liu, and D. Y. Jin, "Advances in Highly Doped Upconversion Nanoparticles," Nat. Commun., 9 2415 (2018). https://doi.org/10.1038/s41467-018-04813-5
  25. B. Zhou, B. Y. Shi, D. Y. Jin, and X. G. Liu, "Controlling Upconversion Nanocrystals for Emerging Applications," Nat. Nanotechnol., 10 [11] 924-36 (2015). https://doi.org/10.1038/nnano.2015.251
  26. Y. Q. Lu, J. B. Zhao, R. Zhang, Y. J. Liu, D. M. Liu, E. M. Goldys, X. S. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. J. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Y. Jin, "Tunable Lifetime Multiplexing Using Luminescent Nanocrystals," Nat. Photonics, 8 32-6 (2014). https://doi.org/10.1038/nphoton.2013.322
  27. X. W. Liu, Y. Wang, X. Y. Li, Z. G. Yi, R. R. Deng, L. L. Liang, X. J. Xie, D. T. B. Loong, S. Y. Song, D. Y. Fan, A. H. All, H. J. Zhang, L. Huang, and X. G. Liu, "Binary Temporal Upconversion Codes of $Mn^{2+}$-Activated Nanoparticles for Multilevel Anti-Counterfeiting," Nat. Commun., 8 899 (2017). https://doi.org/10.1038/s41467-017-00916-7
  28. M. L. You, M. Lin, S. R. Wang, X. M. Wang, G. Zhang, Y. Hong, Y. Q. Dong, G. R. Jin, and F. Xu, "Three-Dimensional Quick Response Code Based on Inkjet Printing of Upconversion Fluorescence Nanoparticles for Drug Anti-Counterfeiting," Nanoscale, 8 [19] 10096-104 (2016). https://doi.org/10.1039/C6NR01353H
  29. K. Ming, J. S. Kim, M. J. Biondi, A. Syed, K. Chen, A. Lam, M. Ostrowski, A. Rebbapragada, J. J. Feld, and W. C. W. Chan, "An Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients," ACS Nano, 9 [3] 3060-74 (2015). https://doi.org/10.1021/nn5072792
  30. L. Chen, C. Lai, R. Marchewka, R. M. Berry, and K. C. Tam, "CdS Quantum Dot-Functionalized Cellulose Nanocrystal Films for Anti-Counterfeiting Applications," Nanoscale, 8 [27] 13288-96 (2016). https://doi.org/10.1039/C6NR03039D
  31. M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, "Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules," Nat. Biotechnol., 19 [7] 631-35 (2001). https://doi.org/10.1038/90228
  32. G. Wang, Y. K. Leng, H. J. Dou, L. Wang, W. W. Li, X. B. Wang, K. Sun, L. S. Shen, X. L. Yuan, J. Y. Li, K. Sun, J. S. Han, H. S. Xiao, and Y. Li, "Highly Efficient Preparation of Multiscaled Quantum Dot Barcodes for Multiplexed Hepatitis B Detection," ACS Nano, 7 [1] 471-81 (2013). https://doi.org/10.1021/nn3045215
  33. H. M. Nam, K. J. Song, D. G. Ha, and T. S. Kim, "Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors," Sci. Rep., 6 30885 (2016). https://doi.org/10.1038/srep30885
  34. H. S. Lee, T. S. Shim, H. R. Hwang, S.-M. Yang, and S.-H. Kim, "Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials," Chem. Mater., 25 [13] 2684-90 (2013). https://doi.org/10.1021/cm4012603
  35. C. T. Clelland, V. Risca, and C. Bancroft, "Hiding Messages in DNA Microdots," Nature, 399 533-34 (1999). https://doi.org/10.1038/21092
  36. N. Goldman, P. Bertone, S. Y. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Birney, "Towards Practical, High-Capacity, Low-Maintenance Information Storage in Synthesized DNA," Nature, 494 [7435] 77-80 (2013). https://doi.org/10.1038/nature11875
  37. J. P. L. Cox, "Long-Term Data Storage in DNA," Trends Biotechnol., 19 [7] 247-50 (2001). https://doi.org/10.1016/S0167-7799(01)01671-7
  38. Y. G. Li, Y. T. H. Cu, and D. Luo, "Multiplexed Detection of Pathogen DNA with DNA-based Fluorescence Nanobarcodes," Nat. Biotechnol., 23 885-89 (2005). https://doi.org/10.1038/nbt1106
  39. G. M. Church, "Methods of Storing Information Using Nucleic Acids"; U.S. Patent 9,996,778, 2018.
  40. J. Davis, "Microvenus," Art J., 55 70-4 (1996). https://doi.org/10.1080/00043249.1996.10791743
  41. T. Lindahl, "Instability and Decay of the Primary Structure of DNA," Nature, 362 [6422] 709-15 (1993). https://doi.org/10.1038/362709a0
  42. R. Yin, D. Zhang, Y. Song, B. Z. Zhu, and H. Wang, "Potent DNA Damage by Polyhalogenated Quinones and $H_2O_2$ via a Metal-Independent and Intercalation- Enhanced Oxidation Mechanism," Sci. Rep. 3 1269 (2013). https://doi.org/10.1038/srep01269
  43. J. M. Oh, S. Y. Kwak, and J. H. Choy, "Intracrystalline Structure of DNA Molecules Stabilized in the Layered Double Hydroxide," J. Phys. Chem. Solids, 67 [5-6] 1028-31 (2006). https://doi.org/10.1016/j.jpcs.2006.01.080
  44. T. W. Kim, I. Y. Kim, D. H. Park, J. H. Choy, and S. J. Hwang, "Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid," Sci. Rep., 6 21993 (2016). https://doi.org/10.1038/srep21993
  45. P. X. Wu, W. Li, Y. J. Zhu, Y. N. Tang, N. W. Zhu, and C. L. Guo, "The Protective Effect of Layered Double Hydroxide against Damage to DNA Induced by Heavy Metals," Appl. Clay Sci., 100 76-83 (2014). https://doi.org/10.1016/j.clay.2014.03.009
  46. D. Paunescu, C. A. Mora, M. Puddu, F. Krumeich, and R. N. Grass, "DNA Protection against Ultraviolet Irradiation by Encapsulation in a Multilayered $SiO_2/TiO_2$ Assembly," J. Mater. Chem. B, 2 [48] 8504-9 (2014). https://doi.org/10.1039/C4TB01552E
  47. W. D. Chen, A. X. Kohll, B. H. Nguyen, J. Koch, R. Heckel, W. J. Stark, L. Ceze, K. Strauss, and R. N. Grass, "Combining Data Longevity with High Storage Capacity-Layer-by-Layer DNA Encapsulated in Magnetic Nanoparticles," Adv. Funct. Mater., 29 [28] 1901672 (2019). https://doi.org/10.1002/adfm.201901672
  48. M. A. Palacios, E. Benito-Pena, M. Manesse, A. D. Mazzeo, C. N. Lafratta, G. M. Whitesides, and D. R. Walt, "InfoBiology by Printed Arrays of Microorganism Colonies for Timed and On-Demand Release of Messages," Proc. Natl. Acad. Sci., 108 [40] 16510-4 (2011). https://doi.org/10.1073/pnas.1109554108
  49. S. W. Thomas III, R. C. Chiechi, C. N. LaFratta, M. R. Webb, A. Lee, B. J. Wiley, M. R. Zakin, D. R. Walt, and G. M. Whitesides, "Infochemistry and Infofuses for the Chemical Storage and Transmission of Coded Information," Proc. Natl. Acad. Sci., 106 [23] 9147-50 (2009). https://doi.org/10.1073/pnas.0902476106
  50. D. H. Park, G. Choi, and J. H. Choy, "Bio-Layered Double Hydroxides Nanohybrids for Theranostics Applications," pp. 137-74 in Photofunctional Layered Materials, Structure and Bonding, 2015.
  51. S. M. Paek, J. M. Oh, and J. H. Choy, "A Lattice-Engineering Route to Heterostructured Functional Nanohybrids," Chem. Asian. J., 6 [2] 324-38 (2011). https://doi.org/10.1002/asia.201000578
  52. G. Mishra, B. Dash, and S. Pandey, "Layered Double Hydroxides: A Brief Review from Fundamentals to Application as Evolving Biomaterials," Appl. Clay Sci., 153 172-86 (2018). https://doi.org/10.1016/j.clay.2017.12.021
  53. J. M. Oh, D. H. Park, S. J. Choi, and J. H. Choy, "LDH Nanocontainers as Bio-Reservoirs and Drug Delivery Carriers," Recent Pat. Nanotechnol., 6 [3] 200-17 (2012). https://doi.org/10.2174/187221012803531538
  54. J. H. Choy, S. Y. Kwak, Y. J. Jeong, and J. S. Park, "Inorganic Layered Double Hydroxides as Nonviral Vectors," Angew. Chem. Int. Ed., 39 [22] 4042-45 (2000).
  55. J. M. Oh, T. T. Biswick, and J. H. Choy, "Layered Nanomaterials for Green Materials," J. Mater. Chem., 19 [17] 2553-63 (2009). https://doi.org/10.1039/b819094a
  56. S. Shikha, T. Salafi, J. T. Cheng, and Y. Zhang, "Versatile Design and Synthesis of Nano-Barcodes," Chem. Soc. Rev., 46 [22] 7054-93 (2017). https://doi.org/10.1039/c7cs00271h
  57. X. Qin, J. H. Xu, Y. M. Wu, and X. G. Liu, "Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications," ACS Cent. Sci., 5 [1] 29-42 (2019). https://doi.org/10.1021/acscentsci.8b00827
  58. Y. H. Zhang, L. X. Zhang, R. Deng, J. Tian, Y. Zong, D. Y. Jin, and X. G. Liu, "Multicolor Barcoding in a Single Upconversion Crystal," J. Am. Chem. Soc., 136 [13] 4893-96 (2014). https://doi.org/10.1021/ja5013646
  59. H. C. Liu, M. K. G. Jayakumar, K. Huang, Z. Wang, X. Zheng, H. Agren, and Y. Zhang, "Phase Angle Encoded Upconversion Luminescent Nanocrystals for Multiplexed Applications," Nanoscale, 9 1676-86 (2017). https://doi.org/10.1039/c6nr09349c
  60. H. Dong, L.-D. Sun, W. Feng, Y. Y. Gu, F. Y. Li, and C.-H. Yan, "Versatile Spectral and Lifetime Multiplexing Nanoplatform with Excitation Orthogonalized Upconversion Luminescence," ACS Nano, 11 [3] 3289-97 (2017). https://doi.org/10.1021/acsnano.7b00559
  61. D. L. Zhou, D. Y. Li, X. Y. Zhou, W. Xu, X. Chen, D. L. Liu, Y. S. Zhu, and H. W. Song, "Semiconductor Plasmon Induced Upconversion Enhancement in $mCu_{2-x}S@SiO_2@Y_2O_3:Yb^{3+}$, $Er^{3+}$ Core-Shell Nanocomposites," ACS Appl. Mater. Interfaces, 9 [40] 35226-33 (2017). https://doi.org/10.1021/acsami.7b09850

Cited by

  1. Biocompatible Hydrotalcite Nanohybrids for Medical Functions vol.10, pp.2, 2019, https://doi.org/10.3390/min10020172
  2. Fluorescein and Rhodamine B-Binding Domains from Autodisplayed Fv-Antibody Library vol.32, pp.10, 2019, https://doi.org/10.1021/acs.bioconjchem.1c00376