Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.8.657

The Synthesis and Characterization of Mesoporous Microbead Incorporated with CdSe/ZnS QDs  

Lee, Ji-Hye (Bio-IT convergence center, Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology(KICET))
Hyun, Sang-Il (Bio-IT convergence center, Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology(KICET))
Lee, Jong-Huen (Department of Materials Science and Engineering, Korea University)
Koo, Eun-Hae (Bio-IT convergence center, Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology(KICET))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.8, 2012 , pp. 657-663 More about this Journal
Abstract
The spherical mesoporous silica is synthesized and incorporated with CdSe/ZnS quantum dots(QDs) for preparing micro beads to detect toxic and bio-materials with high sensitivity. The spherical silica beads with the brunauer-emmett-telle(BET) average pore size of 15 nm were prepared with a ratio 1, 3, 5-trimethylbenzen, as a swelling agent, to the block-copolymer template surfactant of over 1 and under vigorous mixing condition. The surface of spherical mesoporous silica is modified using octadecylsilane for incorporating QDs. Based on photoluminescence(PL) spectra, the relative brightness of mesoporous silica beads incorporated with 10 nM of QDs is 79,000 times brighter than that of Rodamine 6 G.
Keywords
CdSe/ZnS; Quantum dots; Mesoporous silica; Microbead; Incorporation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. R. Sathe, A. Agrawal and S. Nie, Anal. Chem., 78, 5627 (2006).   DOI
2 F. Baldini and A. Giannetti, Proc. SPIE., 5826, 485 (2005).
3 B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, Science, 312, 217 (2006).   DOI   ScienceOn
4 X. Zhao, R. Tapec-Dytioco, and W. Tan, J. Am. Chem. Soc., 125, 11474 (2003).   DOI
5 K. E. Sapsford, T. pons, I. L. Medintz, and H. Mattoussi, Sensors, 6, 925 (2006).   DOI
6 J. M. Costa-Fernández, R. Pereiro, and A. S. Sanz-Medel, Trends Anal. Chem., 25, 207 (2006).   DOI
7 L. Wang, K. Wang, S. Santra, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, Anal. Chem., 78, 647 (2006).
8 C. Petitto, A. Galarneau, M. F. Driole, B. Chiche, B. Alonso, F. Di Renzo, and F. Fajula, Chem. Mater., 17, 2120 (2005).   DOI
9 J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G. D. Stucky, and J. Y. Ying, Langmuir, 16, 8291 (2000).   DOI
10 Y. Han, S. S. Lee, and J. Y. Ying, Chem. Mater., 19, 2292 (2007).   DOI
11 X. Gao and S. Nie, Anal. Chem., 76, 2406 (2004).   DOI
12 B. Ehdaie, Int. J. Biol. Sci., 3, 108 (2007).
13 J. Yang, S. R. Dave, and X. Gao, J. Am. Chem. Soc., 130, 5286 (2008).   DOI
14 X. S. Xie, J. Yu, and W. Y. Yang, Science, 312, 228 (2006).   DOI   ScienceOn
15 J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, Science, 311, 1600 (2006).   DOI   ScienceOn