• Title/Summary/Keyword: bio technology

Search Result 5,475, Processing Time 0.029 seconds

Microfluidic Device for Bio Analytical Systems

  • Junhong Min;Kim, Joon-Ho;Kim, Sanghyo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.100-106
    • /
    • 2004
  • Micro-fluidics is one of the major technologies used in developing micro-total analytical systems (${\mu}$-TAS), also known as “lab-on-a-chip”. With this technology, the analytical capabilities of room-size laboratories can be put on one small chip. In this paper, we will briefly introduce materials that can be used in micro-fluidic systems and a few modules (mixer, chamber, and sample prep. modules) for lab-on-a-chip to analyze biological samples. This is because a variety of fields have to be combined with micro-fluidic technologies in order to realize lab-on-a-chip.

Interpretation of Association Networks among Protein Sequence Motifs

  • Kam, Hye J.;Lee, Junehawk;Lee, Doheon;Lee, Kwang H.
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.75-79
    • /
    • 2003
  • Every protein can be characterized by either a distinct motif or a combination of motifs. Nevertheless, little is known about the relationships among (more than two) the motifs. Some of the proteins in the world are share motifs for evolutional or other biological benefits - they can save energy, time and resource for controlling and managing a variety of proteins. In some cases of motifs, the tendency is quite common and they can act the 'hub' motif of a network of the motif associations. The hubs are structurally and functionally important in themselves and also important in disease-related mutations. They will be highly resistant mutation to conserve their functions. But, in case of the a rare mutation, mutations on the position of hub can more easily cause fatal diseases.

Omics of Cancer

  • Bhati, Aniruddha;Garg, H.;Gupta, A.;Chhabra, H.;Kumari, A.;Patel, T.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4229-4233
    • /
    • 2012
  • With the advances in modern diagnostic expertise for cancer, certain approaches allowing scanning of the complete genome and the proteome are becoming very useful for researchers. These high throughput techniques have already proven power, over traditional detection methods, in differentiating disease sub-types and identifying specific genetic events during progression of cancer. This paper introduces major branches of omics-technology and their applications in the field of cancer. It also addresses current road blocks that need to be overcome and future possibilities of these methods in oncogenic detection.

Synthesis and Biological Activities of (4-Arylpiperazinyl)piperidines as Nonpeptide BACE 1 Inhibitors

  • Boja, Poojary;Won, Sun-Woo;Suh, Dong-Hoon;Chu, Jeong-Hyun;Park, Woo-Kyu;Lim, Hee-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1249-1252
    • /
    • 2011
  • Inhibition of BACE 1 activity is considered as a promising therapeutic target for Alzheimer's Disease (AD). Synthesis and inhibitory activities of (4-arylpiperazinyl)piperidines by bioisosteric replacement of a biaryl group with an arylpiperazine as BACE 1 inhibitors are described. The resulting (4-arylpiperazinyl)piperidines represent novel nonpeptide BACE 1 inhibitors with improved in vitro potency.

Fabrication of Multi-layered Macroscopic Hydrogel Scaffold Composed of Multiple Components by Precise Control of UV Energy

  • Roh, Donghyeon;Choi, Woongsun;Kim, Junbeom;Yu, Hyun-Yong;Choi, Nakwon;Cho, Il-Joo
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • Hydrogel scaffolds composed of multiple components are promising platform in tissue engineering as a transplantation materials or artificial organs. Here, we present a new fabrication method for implementing multi-layered macroscopic hydrogel scaffold composed of multiple components by controlling height of hydrogel layer through precise control of ultraviolet (UV) energy density. Through the repetition of the photolithography process with energy control, we can form several layers of hydrogel with different height. We characterized UV energy-dependent profiles with single-layered PEGDA posts photocrosslinked by the modular methodology and examined the optical effect on the fabrication of multi-layered, macroscopic hydrogel structure. Finally, we successfully demonstrated the potential applicability of our approach by fabricating various macroscopic hydrogel constructs composed of multiple hydrogel layers.