Browse > Article
http://dx.doi.org/10.7314/APJCP.2012.13.9.4229

Omics of Cancer  

Bhati, Aniruddha (Division Medical Biotechnology, School of BioSciences and Technology, VIT)
Garg, H. (Division Medical Biotechnology, School of BioSciences and Technology, VIT)
Gupta, A. (Division Medical Biotechnology, School of BioSciences and Technology, VIT)
Chhabra, H. (Division Medical Biotechnology, School of BioSciences and Technology, VIT)
Kumari, A. (Division Medical Biotechnology, School of BioSciences and Technology, VIT)
Patel, T. (Division Medical Biotechnology, School of BioSciences and Technology, VIT)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.13, no.9, 2012 , pp. 4229-4233 More about this Journal
Abstract
With the advances in modern diagnostic expertise for cancer, certain approaches allowing scanning of the complete genome and the proteome are becoming very useful for researchers. These high throughput techniques have already proven power, over traditional detection methods, in differentiating disease sub-types and identifying specific genetic events during progression of cancer. This paper introduces major branches of omics-technology and their applications in the field of cancer. It also addresses current road blocks that need to be overcome and future possibilities of these methods in oncogenic detection.
Keywords
Genomics; proteomics; epigenomics; transcriptomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barddli A, Parsons DW. Silliman N, et al (2003). Mutational analysis of the tyrosine kinome in colorectal cancers. Science, 300, 949.   DOI
2 Bentley OR (2006). Whole-genome re-sequencing. Curr Opin Genel Dev, 16,545-52.   DOI
3 Benvenuti S, Arena S, BardelliA (2005). Identification of cancer genes by mutational profiling of turnor genomes. FEBS Lea, 579, 1884-90.   DOI
4 Bemstein BE, Meissner A, Lander ES (2007). The manunalian epigenome. Cell, 2, 669-81.
5 Bird A (2007). Perceptions of epigenetics. Nalure, 447,396-8.
6 Ding L, Getz G, Wheeler DA, et al (2008). Somatic mUlations affect key pathways in lung adenocarcinoma. Nature, 455,1069-75.   DOI   ScienceOn
7 Estecio MR, issa JP (2011 ). Dissecting DNA hypermethyiation in cancer. FEBS Letters, 585, 2078-86.   DOI
8 Feber A (2010). Global profiling of methylation in the cancer genome. Cancer Genet Cytagenet, 203, 44-65.
9 Fiers W, Contreras R, Duerinck F (1976). Complete nucleotidesequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene. Nature , 260, 500-7.   DOI
10 Hanash SM, Pitteri SJ, Faca VM (2008). Mining the piasma proteome for cancer biomarkers. Nature, 452, 571 -9.   DOI   ScienceOn
11 Holliday R (1990). Mechanisms for the control of gene activity druingdevelopment. BiolRevCambr PhilosSoc, 65,431-71.
12 Hoque MO, Kim MS, Ostrow KL, et al (2008). Genomewide promoter analysis uncovers portions of the cancer methylome. Cancer Res, 68, 2661-70.   DOI
13 http://www.ncbi.nlm.nih.gov/genome.
14 Hudson TJ, Anderson W, Artez A, et al (2010). International Cancer Genome Consortium International network of cancer genome projects. Nature, 464,993-8.   DOI
15 Jones S, Hruban RH, Kamiyama M, et al (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science, 324, 217.   DOI
16 La Deana WH, Valerie R, Philip G, et al (2009). Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res, 19, 657-66.   DOI
17 Li X, Shen S, Wu M, et at (2011 ). Transcriptomic regulation and molecular mechanism of polygenic tumor at different stages. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 36, 585-91.
18 Lander ES, Linton LM, Birren B, et al (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860-921.   DOI   ScienceOn
19 Lay JO, Borgmann S, Liyanage R Wilkins CL(2006). Problems with the "omics". Trends in Analytical Chemistry, 25, 11 .   DOI
20 Laderberg J, McCray AT (2001). 'Ome Sweet 'Ontics -- A genealogical treasury of words. The Scientist, 15, 8.
21 Moore LE, Pfeiffer RM, Zhang Z, et al (2012). Proteomic biomarkers in combination with CA 125 for detection of epithelial ovarian cancer using pre-diagnostic senun samples from the prostate lung colon and ovary (PLCO) cancer screening trial. Cancer, 118, 91-100.   DOI
22 Morel NM, Holland lM, van der Greef J, et al (2004). Primer on medical genomics part XIV: Introduction to systems biology-A new approach to understanding disease and treatment. Maya Clin Proc, 79, 651-8.   DOI
23 MUlTay S, Linardou H (2004). Proteomics and Cancer. STEP K$\Lambda$INIKHZ$\Sigma$ O$\Gamma$KO$\Lambda$O$\Gamma$I$\Sigma$, 3, 49-56.
24 Ng PC, Levy S, Huang J, et al (2008). Genetic variation in an individual human exome. PLoS Genetics, 4, 1000160.   DOI
25 Olsvik O , Wahlberg J, Peuerson B, et al (1993).- Use of automated sequencing of polymerase chain reactiongenerated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol, 31,22-5.
26 Pettersson E, Lundeberg J, Ahmadian A (2009). Generations of sequencing technologies. Genomics, 93, 105- 11.   DOI
27 Schuster SC (2008). Next-generation sequencing transforms today's biology. Nat Methods, 5, 16-8.   DOI
28 Raphael BJ, Volik S, Collins C, Pevzner PA (2003). Reconstructing tumor genome architectures. Bioinformatics, 19, 162-71.
29 Sanger F, Air GM, Barrell BG, et al (1977). Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 265, 687-95.   DOI   ScienceOn
30 Sarah BN, Entily HT, Peggy DR, et al (2009), Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461, 272-76.   DOI
31 Shah Sp, MorinRD, Khattra J, et al (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461, 809-13.   DOI
32 Sjoblom T, Jones S, Wood LD, et al (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314,268-74.   DOI   ScienceOn
33 Stadler ZK, Vijai J , Thorn P, el al (2010). Genome-wide association studies of cancer predisposition. Hematol Oncol Clin North Am, 24, 973-96.   DOI
34 Stephens PJ, McBride DJ, Lin ML, et al (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462, 1005-10.   DOI   ScienceOn
35 Taguchi A, Politi K, Pitteri, et al (2011 ). Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell, 20, 289-99.   DOI
36 Tripathi AK, Koringa PG , Jakhesara SJ, et al (2012). A preliminary sketch of horn cancer transcriplome in Indian zebu cattle. Gene, 1, 124-31.
37 Varela I, Tarpey P, Rame K, et al (2011). Exome sequencing identifies frequentmutation of the SWUSNF complex gene PBRMI in renal carcinoma. Nature, 469, 539-42   DOI
38 Wei X, Walia V, LinJC, et al (2011). Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nature Genetics, 43, 442-6.   DOI
39 Venter Cl, Adams DM, Myers WE, et at (2001). The sequence of the human genome. Science, 291, 1304-51.   DOI   ScienceOn
40 Volik S, Zhao S, Chin K, et al (2003), End-sequence profiling: Sequence-based analysis of aberrant genomes. Proc Natl Acad Sci, 100, 7696-701.   DOI
41 Weir BA, Michele S. Woo MS, Getz G, et al (2007). Characterizing the cancer genome in Iung adenocarcinoma. Nature, 450, 893-8.   DOI
42 Wilkins MR, Appel R, Jennifer EVE, et al (1994), Guidelines for next 10 years of proteins. Proteomics, 6, 4-8.