• Title/Summary/Keyword: bio big data

Search Result 79, Processing Time 0.021 seconds

Interaction of the Lysophospholipase PNPLA7 with Lipid Droplets through the Catalytic Region

  • Chang, Pingan;Sun, Tengteng;Heier, Christoph;Gao, Hao;Xu, Hongmei;Huang, Feifei
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.286-297
    • /
    • 2020
  • Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown. Herein, we demonstrate that PNPLA7-C localizes to the mature LDs ex vivo and also colocalizes with pre-existing LDs. Localization of PNPLA7-C with LDs induces LDs clustering via non-enzymatic intermolecular associations, while PNPLA7 alone does not induce LD clustering. Residues 742-1016 contains four putative transmembrane domains which act as a LD targeting motif and are required for the localization of PNPLA7-C to LDs. Furthermore, the N-terminal flanking region of the LD targeting motif, residues 681-741, contributes to the LD targeting, whereas the C-terminal flanking region (1169-1326) has an anti-LD targeting effect. Interestingly, the LD targeting motif does not exhibit lysophosphatidylcholine hydrolase activity even though it associates with LDs phospholipid membranes. These findings characterize the specific functional domains of PNPLA7 mediating subcellular positioning and interactions with LDs, as wells as providing critical insights into the structure of this evolutionarily conserved phospholipid-metabolizing enzyme family.

Discovery and Functional Study of a Novel Genomic Locus Homologous to Bα-Mating-Type Sublocus of Lentinula edodes

  • Lee, Yun Jin;Kim, Eunbi;Eom, Hyerang;Yang, Seong-Hyeok;Choi, Yeon Jae;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.582-588
    • /
    • 2021
  • The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of Bα and Bβ subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the Bα sublocus, but unlike the multiallelic Bα sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.

Growth Characteristics of Polyporales Mushrooms for the Mycelial Mat Formation

  • Bae, Bin;Kim, Minseek;Kim, Sinil;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.280-284
    • /
    • 2021
  • Mushroom strains of Polyporales from the genera Coriolus, Trametes, Pycnoporus, Ganoderma, and Formitella were explored in terms of mycelial growth characteristics for the application of mushroom mycelia as alternative sources of materials replacing fossil fuel-based materials. Among the 64 strains of Polyporales, G. lucidum LBS5496GL was selected as the best candidate because it showed fast mycelial growth with high mycelial strength in both the sawdust-based solid medium and the potato dextrose liquid plate medium. Some of the Polyporales in this study have shown good mycelial growth, however, they mostly formed mycelial mat of weak physical strength. The higher physical strength of mycelial mat by G. lucidum LBS5496GL was attributed to its thick hyphae with the diameter of 13 mm as revealed by scanning electron microscopic analysis whereas the hyphae of others exhibited less than 2 mm. Glycerol and skim milk supported the best mycelial growth of LBS5496GL as a carbon and a nitrogen source, respectively.

Bio-Sensing Convergence Big Data Computing Architecture (바이오센싱 융합 빅데이터 컴퓨팅 아키텍처)

  • Ko, Myung-Sook;Lee, Tae-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.

Development of Smart Healthcare Wear System for Acquiring Vital Signs and Monitoring Personal Health (생체신호 습득과 건강 모니터링을 위한 스마트 헬스케어 의복 개발)

  • Joo, Moon-Il;Ko, Dong-Hee;Kim, Hee-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.808-817
    • /
    • 2016
  • Recently, the wearable computing technology with bio-sensors has been rapidly developed and utilized in various areas such as personal health, care-giving for senior citizens who live alone, and sports activities. In particular, the wearable computing equipment to measure vital signs by means of digital yarns and bio sensors is noticeable. The wearable computing devices help users monitor and manage their health in their daily lives through the customized healthcare service. In this paper, we suggest a system for monitoring and analyzing vital signs utilizing smart healthcare clothing with bio-sensors. Vital signs that can be continuously acquired from the clothing is well-known as unstructured data. The amount of data is huge, and they are perceived as the big data. Vital sings are stored by Hadoop Distributed File System(HDFS), and one can build data warehouse for analyzing them in HDFS. We provide health monitoring system based on vital sings that are acquired by biosensors in smart healthcare clothing. We implemented a big data platform which provides health monitoring service to visualize and monitor clinical information and physical activities performed by the users.

A review of big data analytics and healthcare (빅데이터 분석과 헬스케어에 대한 동향)

  • Moon, Seok-Jae;Lee, Namju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.76-82
    • /
    • 2020
  • Big data analysis in healthcare research seems to be a necessary strategy for the convergence of sports science and technology in the era of the Fourth Industrial Revolution. The purpose of this study is to provide the basic review to secure the diversity of big data and healthcare convergence by discussing the concept, analysis method, and application examples of big data and by exploring the application. Text mining, data mining, opinion mining, process mining, cluster analysis, and social network analysis is currently used. Identifying high-risk factor for a certain condition, determining specific health determinants for diseases, monitoring bio signals, predicting diseases, providing training and treatments, and analyzing healthcare measurements would be possible via big data analysis. As a further work, the big data characteristics provide very appropriate basis to use promising software platforms for development of applications that can handle big data in healthcare and even more in sports science.

Research on the Strategic Use of AI and Big Data in the Food Industry to Drive Consumer Engagement and Market Growth

  • Taek Yong YOO;Seong-Soo CHA
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Purpose: The research aims to address the intricacies of AI and Big Data application within the food industry. This study explores the strategic implementation of AI and Big Data in the food industry. The study seeks to understand how these technologies can be employed to bolster consumer engagement and contribute to market expansion, while considering ethical implications. Research Method: This research employs a comprehensive approach, analyzing current trends, case studies, and existing academic literature. It focuses on the application of AI and Big Data in areas such as supply chain management, consumer behavior analysis, and personalized marketing strategies. Results: The study finds that AI and Big Data significantly enhance market analytics, consumer personalization, and market trend prediction. It highlights the potential of these technologies in creating more efficient supply chains, improving consumer satisfaction through personalization, and providing valuable market insights. Conclusion and Implications: The paper offers actionable insights and recommendations for the effective implementation of AI and Big Data strategies in the food industry. It emphasizes the need for ethical considerations, particularly in data privacy and the transparency of AI algorithms. The study also explores future trends, suggesting that AI and Big Data will continue to revolutionize the industry, emphasizing sustainability, efficiency, and consumer-centric practices.

Characteristics on Big Data of the Meteorology and Climate Reported in the Media in Korea

  • Choi, Jae-Won;Kim, Hae-Dong
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.91-101
    • /
    • 2018
  • This study has analyzed applicable characteristics on big data of the meteorology and climate depending on press releases in the media. As a result, more than half of them were conducted by governmental departments and institutions (26.9%) and meteorological administration (25.0%). Most articles were written by journalists, especially the highest portion stems from straight articles focusing on delivering simple information. For each field, the number of cases had listed in order of rank to be exposed to the media; information service, business management, farming, livestock, and fishing industries, and disaster management, but others did rank far behind; insurance, construction, hydrology and energy. Application of big data about meteorology and climate differed depending on the seasonal change, it was directly related to temperature information during spring, to weather phenomenon such as monsoon and heat wave during summer, to meteorology and climate information during fall, and to weather phenomenon such as cold wave and heavy snow during winter.

Development of Multidimensional Analysis System for Bio-pathways (바이오 패스웨이 다차원 분석 시스템 개발)

  • Seo, Dongmin;Choi, Yunsoo;Jeon, Sun-Hee;Lee, Min-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.467-475
    • /
    • 2014
  • With the development of genomics, wearable device and IT/NT, a vast amount of bio-medical data are generated recently. Also, healthcare industries based on big-data are booming and big-data technology based on bio-medical data is rising rapidly as a core technology for improving the national health and aged society. A pathway is the biological deep knowledge that represents the relations of dynamics and interaction among proteins, genes and cells by a network. A pathway is wildly being used as an important part of a bio-medical big-data analysis. However, a pathway analysis requires a lot of time and effort because a pathway is very diverse and high volume. Also, multidimensional analysis systems for various pathways are nonexistent even now. In this paper, we proposed a pathway analysis system that collects user interest pathways from KEGG pathway database that supports the most widely used pathways, constructs a network based on a hierarchy structure of pathways and analyzes the relations of dynamics and interaction among pathways by clustering and selecting core pathways from the network. Finally, to verify the superiority of our pathway analysis system, we evaluate the performance of our system in various experiments.