• Title/Summary/Keyword: binary codes

Search Result 208, Processing Time 0.024 seconds

An Analysis Technique for Encrypted Unknown Malicious Scripts (알려지지 않은 악성 암호화 스크립트에 대한 분석 기법)

  • Lee, Seong-Uck;Hong, Man-Pyo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.473-481
    • /
    • 2002
  • Decryption of encrypted malicious scripts is essential in order to analyze the scripts and to determine whether they are malicious. An effective decryption technique is one that is designed to consider the characteristics of the script languages rather than the specific encryption patterns. However, currently X-raying and emulation are not the proper techniques for the script because they were designed to decrypt binary malicious codes. In addition to that, heuristic techniques are unable to decrypt unknown script codes that use unknown encryption techniques. In this paper, we propose a new technique that will be able to decrypt malicious scripts based on analytical approach. we describe its implementation.

Adaptive Decoding Scheme of Concatenated Codes for Frequency-Hopped Spread-Spectrum Communications with a Pulse-Burst Jamming (펄스형 Jamming 신호가 존재하는 주파수 도약 대역확산 통신환경에서 쇄상부호 시스템의 적응 복호화 방식)

  • 김정곤;김성대;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.7
    • /
    • pp.1234-1243
    • /
    • 1994
  • We propose an adaptive decoding scheme for a concatenated codes with frequency-hopped spread-spectrum communication system in the presence of a pulse-burst jammer and its performance is analyzed. Concatenated coding system employing binary inner code and Reed-Solomon outer code is investigated and the use of side information is allowed to decode both erasures and errors. Our scheme makes the decoder adapts to the level of jamming by switching between two decoding modes such that the overall block error probability can be reduced. It is shown that the proposed decoding scheme yields a significant performance improvement over a conventional decoding scheme.

  • PDF

Properties and Performance of Space-Time Bit-Interleaved Coded Modulation Systems in Fast Rayleigh Fading Channels

  • Park, Dae-Young;Byun, Myung-Kwang;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we investigate the properties and performance of space-time bit-interleaved coded modulation (STBICM) systems in fast Rayleigh fading channels. We first show that ST-BICM with QPSK signaling in fast fading channels possesses the uniform distance property, which makes performance analysis tractable. We also derive the probability distribution of the squared Euclidean distance between space-time symbols assuming uniform bit-interleaving. Based on the distribution, we show that the diversity order for each codeword pair becomes maximized as the frame length becomes sufficiently long. This maximum diversity order property implies that the bit-interleaver transforms an ST-BICM system over transmit diversity channels into an equivalent coded BPSK system over independent fading channels. We analyze the performance of ST-BICM in fast fading channels by deriving an FER upper bound. The derived bound turns out very accurate, requiring only the distance spectrum of the binary channel codes of ST-BICM. Numerical results demonstrate that the bound is tight enough to render an accurate estimate of performance of ST-BICM systems.

Design of MuIti-Weight 2-Dimensional Optical Orthogonal Codes (다중 부호 무게를 가진 2차원 광 직교 부호의 설계)

  • Piao, Yong-Chun;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.1-5
    • /
    • 2008
  • Optical code division multiple access(OCDMA) systems make the active users to share the bandwidth by simply assigning distinct optical orthogonal codeword to each active user. An optical orthogonal code(OOC) is a collection of binary sequences with good correlation properties which are important factors of determining the capacity of OCDMA systems. Recently, 2-D OOC construction method is frequently researched which is able to support more users than 1-D OOC. In this paper, a combinatorial construction of simple multi-weight 2-D OOC with autocorrelation 0 and crosscorrelation 1 is proposed and the bound on the size of these codes is derived.

Turbo Trellis Coded Modulation with Multiple Symbol Detection (다중심벌 검파를 사용한 터보 트렐리스 부호화 변조)

  • Kim Chong Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.105-114
    • /
    • 2000
  • In this paper, we propose a bandwidth-efficient channel coding scheme using the turbo trellis-coded modulation with multiple symbol detection. The turbo code can achieve good bit error rates (BER) at low SNR. That comprises two binary component codes and an interleaver. TCM codes combine modulation and coding by optimizing the euclidean distance between codewords. This can be decoded with the Viterbi or the symbol-by- symbol MAP algorithm. But we present the MAP algorithm with branch metrics of the Euclidean distance of the first phase difference as well as the Lth phase difference. The study shows that the turbo trellis-coded modulation with multiple symbol detection can improve the BER performance at the same SNR.

  • PDF

Generating Call Graph for PE file (PE 파일 분석을 위한 함수 호출 그래프 생성 연구)

  • Kim, DaeYoub
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.451-461
    • /
    • 2021
  • As various smart devices spread and the damage caused by malicious codes becomes more serious, malicious code detection technology using machine learning technology is attracting attention. However, if the training data of machine learning is constructed based on only the fragmentary characteristics of the code, it is still easy to create variants and new malicious codes that avoid it. To solve such a problem, a research using the function call relationship of malicious code as training data is attracting attention. In particular, it is expected that more advanced malware detection will be possible by measuring the similarity of graphs using GNN. This paper proposes an efficient method to generate a function call graph from binary code to utilize GNN for malware detection.

Interference Analysis Among Waveforms and Modulation Methods of Concurrently Operated Pulse Doppler Radars (단일 플랫폼에서 동시 운용되는 펄스 도플러 레이다의 파형 및 변조 방식간의 간섭 분석)

  • Kim, Eun Hee;Ryu, Seong Hyun;Kim, Han Saeng;Lee, Ki Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • As the application field of radar is expanded and the bandwidth increases, the number of radar sensors operating at the same frequency is continuously increasing. In this paper, we propose a method of analyzing interference when two pulse doppler radars are operated at the same frequency with different waveform which are designed independently. In addition, we show that even for a previously designed LFM waveforms, the interference can be suppressed without affecting the performance by changing the sign of the frequency slope by increasing/decreasing, or by modulating the pulses by the different codes. The interference suppression by different slopes is more effective for similar waveform and the suppression by the codes increases as the number of pulses increases. We expect this result can be extended to the cases where multiple radars are operated at the same frequency.

The Study on Improvement of the Program that Traces the Binary Codes in Execution (실행 중인 바이너리 코드 추출 프로그램의 기능 확장 연구)

  • Chang, Hang-Bae;Kwon, Hyuk-Jun;Kim, Yang-Hoon;Kim, Guk-Boh
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1309-1315
    • /
    • 2009
  • This research goal of developing and producing a tool that finds security weakness that may happen when a usual program is executed. The analyzing tool for security weakness has the major functions as follows. In case that a part of anticipated security weakness are in execution, it traces a machine language to a part in execution. And Monitoring System calls and DLL(API) calls when a program is in execution. The result of this study will enable to contribute to use as educational materials for security service in companies and related agencies and to prevent from hacking of external information invaders in the final analysis.

  • PDF

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime (저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰)

  • Song, Jaehyeok;Kang, Kijoong;Ryu, Seunghyup;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

Polar Quantum Channel Coding for Symmetric Capacity Achieving (대칭용량 달성을 위한 극 퀀텀 채널 코딩)

  • Yang, Jae Seung;Park, Ju Yong;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.3-14
    • /
    • 2013
  • We demonstrate a fashion of quantum channel combining and splitting, called polar quantum channel coding, to generate a quantum bit (qubit) sequence that achieves the symmetric capacity for any given binary input discrete quantum channels. The present capacity is achievable subject to input of arbitrary qubits with equal probability. The polarizing quantum channels can be well-conditioned for quantum error-correction coding, which transmits partially quantum data through some channels at rate one with the symmetric capacity near one but at rate zero through others.