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Properties and Performance of Space-Time Bit-Interleaved
Coded Modulation Systems in Fast Rayleigh Fading
Channels

Daeyoung Park, Myung-Kwang Byun, and Byeong Gi Lee

Abstract: In this paper, we investigate the properties and per-
formance of space-time bit-interleaved coded modulation (ST-
BICM) systems in fast Rayleigh fading channels. We first show
that ST-BICM with QPSK signaling in fast fading channels pos-
sesses the uniform distance property, which makes performance
analysis tractable. We also derive the probability distribution of the
squared Euclidean distance between space-time symbols assuming
uniform bit-interleaving. Based on the distribution, we show that
the diversity order for each codeword pair becomes maximized as
the frame length becomes sufficiently long. This maximum diver-
sity order property implies that the bit-interleaver transforms an
ST-BICM system over transmit diversity channels into an equiv-
alent coded BPSK system over independent fading channels. We
analyze the performance of ST-BICM in fast fading channels by de-
riving an FER upper bound. The derived bound turns out very ac-
curate, requiring only the distance spectrum of the binary channel
codes of ST-BICM. Numerical results demonstrate that the bound
is tight enough to render an accurate estimate of performance of
ST-BICM systens.

Index Terms: Space-time codes, bit-interleaved coded modulation,
fast fading, distance spectrum.

L. INTRODUCTION

Space-time codes have been attracting much interest of re-
searchers because they support high data rates with moderate
complexity in wireless communication environments [1]. This
technique enables to integrate channel coding, modulation, and
multiple transmit antennas at the base station, with optional
receive diversity incorporated at the mobile station. Indepen-
dently of this, bit-interleaved coded modulation (BICM) was
introduced as a means of improving the performance of coded
modulation over fading channels [2]. It makes the code diver-
sity equal to the smallest number of distinct bits (rather than
channel symbols), and offers much better trade-offs between
code diversity and trellis complexity than trellis coded modu-
lation (TCM) does. The concept of BICM, when it is applied
to multiple transmit antenna environment, yields space-time bit-
interleaved coded modulation (ST-BICM) [3]-[5]. As BICM
divides the code design process into encoder selection and mod-
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ulation scheme selection processes, the design becomes simpler
than the standard space-time code design.

Biglieri et al. [3] analyzed the information-theoretic limit of
ST-BICM and showed that the ergodic and outage capacities are
close to the general coded modulation case. Tonello [4], [5] pre-
sented an ST-BICM encoder structure and an iterative decoding
method that follows the turbo decoding principle. The author
also presented a code construction criterion in fast fading chan-
nels that the channel codes should be designed to have a large
free Hamming distance, but did not present analytic bounds for
frame error rate (FER).

Recently, there have been several attempts to analyze the per-
formance of space-time codes in fast fading channels. Uysal et
al. [6], [7] derived the exact pairwise error probability (PEP)
of aresidue integration form for fast fading channels and Simon
[8] derived the exact PEP in numerical integration form for fast
and slow fading channels. The evaluation of those FER esti-
mates required to know ali the Euclidean distances of each error
event, which is a considerable burden of memory and compu-
tation. Recently in [9], we have analyzed the performance of
space-time codes in fast Rayleigh fading channels by deriving a
new FER upper bound and proposing a distance spectrum com-
putation method. The derived bound required only the product
distances of error events and turned out to be very accurate.

In this paper, we investigate the properties and effects of bit-
interleaving to understand the outstanding performance of ST-
BICM. We first show that ST-BICM with QPSK signaling in fast
fading channels possesses the uniform distance property and that
the error probability is independent of the transmitted codeword.
We also derive the probability distribution of the Euclidean dis-
tance between two space-time symbols assuming uniform inter-
leaving, based on which, we then show that the bit-interleaving
makes the diversity order maximized with the probability close
to 1. This maximum diversity order property holds irrespec-
tively of the types of the binary channel codes, as it is inher-
ited by the bit-interleavers. This property enables us to predict
the performance of ST-BICM using that of the equivalent coded
BPSK system over independent fading channels. We can ana-
lyze the performance of ST-BICM by deriving a tight FER upper
bound.

This paper is organized as follows: To begin with, we describe
the system model and the PEP in Section II. Then, we show that
ST-BICM in fast fading possesses the uniform distance prop-
erty, and also derive the probability distribution of the Euclidean
distance assuming uniform interleaving, and based on this, we
establish the maximum diversity order property of ST-BICM in
Section IIL Finally, in Section IV, we derive a new upper bound

1229-2370/04/$10.00 © 2004 KICS



(%)

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 6. NO. |, MARCH 2004

b o b,
;,117 bLIl N QpSK E
—»|  Channel > Bitinterleaver > /P converter 3 ;IQ b ;,Q »  Modulator
encoder ..b, - by ; QPSK o2
.:.1?12"2’ ."-I?LZ"? > Modulator

(a)

X,

APP
demodulator

—»Bit-deinterleaver

Channel
decoder

Bit-interleaver

Fig. 1.

of the frame error probability and demonstrate by simulations
that the bound is tight enough to estimate the performance of
ST-BICM accurately.

II. PRELIMINARIES

To begin with, we describe the system model of ST-BICM
systems and introduce some key definitions and equations re-
lated to PEP bounds in support of the analytical discussions to
follow in the subsequent sections.

A. System Model

We consider a baseband communication system with np
transmit antennas and ng receive antennas. Fig. 1(a) shows
the block diagram of the transmitter of ST-BICM for the case
of ny = 2. The transmitted data are encoded by a binary lin-
ear channel code, such as a convolutional code, a turbo code,
etc. The encoded sequence is bit-interleaved and is applied to a
serial-to-parallel (S/P) converter that produces 2 X nr parallel
data sequences. The data sequences are then mapped into QPSK
symbols based on the Gray mapping rule. We assume that the
frame length is L and the elements of the signal constellation
are contracted such that the average energy of the constellation
becomes 1.

We define a space-time codeword matrix of size nt x L, ob-
tained by arranging the transmitted sequence in an array, as

&k

c= ) . (D
nr nt nr
&) Co Cr,

for which the i-th row ¢’ = [c} ¢ --- %] is the data sequence
transmitted from the i-th transmit antenna, and the ¢-th column

(b)

The block diagram of ST-BICM: (a) transmitter, (b) receiver.

ci = [ctc? - cFT]T is the space-time symbol at time ¢, where

[']¥ denotes the matrix transpose operation.
At time ¢, the received signal at receive antenna j, j =
1,2,--- ,ng, is given by

Tt =VE Zatd ¢ +77t» 2)

where E, denotes the energy per symbol and 7] the noise com-
ponent of the receive antenna j at time ¢, which is an indepen-
dent sample of the zero-mean complex Gaussian random vari-
able with independent real and imaginary parts, each with vari-
ance 2 . Coefficient a;” is the fading attenuation for the path
from transmit antenna i fo receive antenna j at time ¢.

In this paper, we assume that the signals received at differ-
ent antennas experience independent fading, which means that
the fading coefficients a;” are independent zero-mean complex
Gaussian random variables with independent real and imaginary
parts, each with variance 1/2. We consider that the path coeffi-
cients can be modeled as fast Rayleigh fading. For fast fading,
it is assumed that the fading coefficients vary symbol to symbol.

For decoding, we adopt the iterative demodulation-decoding
method in [10] (see Fig. 1(b)). The a posteriori probability
(APP) demodulator generates the log likelihood ratio (LLR) of
channel-encoded bits using noise statistics. The LLR’s are dein-
terleaved and transferred to the channel decoder, such as BCJR
decoder [11] or SOVA decoder [12]. The decoder outputs are
re-interleaved and fed back to the APP demodulator. LLR’s are
iteratively interchanged between the demodulator and the de-
coder to successively improve the error performance.

B. Fairwise Error Probability

The PEP is the probability that the decoder selects the se-
quence é as an estimate of the transmitted sequence c¢. If an
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ideal channel state information (CSI) is available at the receiver,
the PEP takes the expression [13]

Pc,é)=E [Q ( 72id2(c, a))} :

for the tail probability of I:he Gaussian probability density func-
tion Q(y \/-27 f e=%%" dz, the SNR per symbol v, = =,
and the squared modified Euclidean distance d?(c, &).

In fast fading channels, the distance d*(c, &) can be written
as [1]

3)

L ngr
-3 % b, ﬁ]] @
t=1 j=1
where
D, = e — & Z‘ c ; )

denotes the squared Euclidean distance between the two space-
time symbols ¢; and é&;. Also, 3{’s in (4) are independent zero-
mean complex Gaussian random variables with independent real
and imaginary parts, each with variance 1/2. Let éy denote
the symbol-wise Hamming distance, i.e., the number of time in-
stances t = 1,2,--- | L, such that D; # 0. Then, the right-hand
side of (4) has dynp independent random variables, so the di-
versity order of §gng is achieved.

The PEP in (3) has been evaluated in [8] and [14] and ex-
pressed as

n/2 L
PP(D):l/O H

t=1

D tYs e
(1 50) 0 O
where D = {Dy, -+, Dy} denotes the set of the squared Eu-
clidean distances corresponding to a pairwise error event. If D
is given, we can obtain the exact value of the PEP through nu-
merical integration of (6). However, to evaluate the FER, we
should enumerate a number of sets of all distances of simple er-
ror events, which requires a large amount of memory and com-
putation. This problem can be resolved by employing a new
upper bound of the PEP that relies only on the product distance

"

=1
e #0

Do

i.e., the product of all nonzero squared Euclidean distances.'

Recently, Byun et al. presented a new tight PEP upper bound of
the form [14]

SIALE
Py(01,6p) = Jisynn) ( L I :

(N

where

m—
T (e) = "
k=

( Hperer ®
0

T As can be seen in (6), the PEP depends only on &, not on individual Dy's,
at high SNR.

for the positive integer m and P (z) = § (1 — 4 /lf_—z) , T >
2 The bound in (7) depends only on 4, and it is uniformly
tighter than the Fitz's bound in {15] and the tightest upper bound

for each given d,, [14].

III. PROPERTIES OF ST-BICM

Based on the system model above, we now investigate the
properties of ST-BICM systems: We first show that ST-BICM
in fast fading channels has the uniform distance property. We
then derive the probability distribution of ;7 and J,, and based
on this, we present that ST-BICM in fast fading channels has the
maximum diversity order property.

A. Uniform Distance Property

As shown in Fig. 1{a), the encoded sequence is bit-interleaved
and applied to an S/P converter that produces 2 x ny parallel bit
sequences b/ and b2 i = 1,2, - ,nr. So the S/P-converted
bit sequences may be rearranged in matrix form by

B=[b b - b by | €z, 9

for

T
be=[ b b9 Pl b€ bpl B9
€23, t=1,2,--,L, (10)

where Z, denotes a binary group comprised of 0 or 1. The mod-
ulator at the last stage maps b; into a space-time symbol ¢; based
on the Gray mapping rule, i.e.,

1

2 {0 iy,

The squared Euclidean distance between two space-time sym-
bols is

(b

i
;=

nr
D, = Y ld-¢P
=1
1nT i, il
= Y 1 (=1 %
DRI
=1
1 & i@ i@ |2
+= 11— (-1
5 2 (=1

= ZdH(btaBt)a (12)

where @ denotes the exclusive OR operation and dg(x,y) the
Hamming distance between x and y.

Equation (12) indicates that the Euclidean distance between
two space-time symbols is proportional to the Hamming dis-
tance between the bit sequences corresponding to that space-
time symbols in the case of the QPSK Gray mapping. So, the
set of the squared Euclidean distances corresponding to a pair-
wise error event, D, depends not on the transmitted codeword
but on the Hamming distance. Since we employ a linear binary

2 As can be seen in (7), §pyn g and 6,1,/ u correspond to the diversity advan-
tage and the coding advantage, respectively [1].
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Fig. 2. Probability of Hamming distance & and product distance &, (nr = 2, L=130, d=8): (a) Pr(sz), (b) Pr(s%/°#).

code, the sets of Hamming distances from any codeword to all
others are all identical. Therefore the uniform distance property
holds for ST-BICM systems with QPSK signaling. As the uni-
form distance property implies that the error probability does
not depend on the transmitted codewords, we may assume, in
the performance analysis, that the space-time codeword matrix
corresponding to an all-zero codeword of the channel code is
transmitted, without loss of generality.

B. Probability Distribution of Euclidean Distance Between
Space-Time Symbols

The set of squared Euclidean distances between two space-
time symbols, D = {D;|D; = ||c; — étﬂz, t=12,---,L},
determines the PEP in (6). Note that the exact position of the
nonzero bits in a space-time symbol is irrelevant to the PEP
but the number of nonzero bits (i.e., Hamming distance) in the
space-time symbol is important. So, it is a reasonable approach
to classify the set according to the Hamming distance between
b, and b;. Since we may assume that the space-time codeword
matrix corresponding to the all-zero codeword is transmitted, we
set b;=0. Then we need to consider only the Hamming weight
of by, t =1,2,--- | L.

Let n; denote the number of space-time symbols whose Ham-
ming weight is ¢ in the space-time codeword matrix. For exam-
ple, there are n; symbols with Hamming weight 1, and ns sym-
bols with Hamming weight 2, and so on. For 2-transmit antenna
case, the set D) can be completely described by n;, 1 = 1,2, 3, 4.

We define by n = (ny,ng, - ,nan, ) the type of the set D.
Then, for a given type n, the number of nonzero D,’s, g, is
expressed by

2n

Su(n) =Y ni.
i=1

13)

Since the number of D, ’s taking the value 27 is n;, the product

10 T o Y S
107 F . |
07+ T fn} b
nl
_ 107 - 1
?-;en
-
10 F b
107 b
107 b
10 2 275 :IB 315 4 4:5 5 55
51/5H
P
(b)
of nonzero D,’s, d;, is expressed by
2ng 2nr
8p(m) = [ 20y = 2% [T ™. (14)

=1 i=1

We consider a codeword with Hamming weight d. The inter-
leaver distributes the nonzero d bits into 3 in (9) and the Ham-
ming distances of the columns of 3 determine the type n. The
following theorem describes the probability to get type n for a

given d.

Theorem 1: For a given Hamming weight d, the probability
that the set of squared Euclidean distances between two space-
time symbols is of type n under the assumption of uniform in-
terleaving is given by

2ny (L—317" ng) (2rp YT
_(2“"iTL) Hi:{ ( 27{?1 k)( T:T) ’
it Y00 =d,
0, otherwise.

Pr(n|d) =

s)

Proof: Pr(n|d) takes a nonzero value only if Zf:f in; =
d, because there are Zf;‘fz - n; nonzero bits in B of type
n. The number of possible locations of n; columns in 3 is

( Tfl ) and the number of different ordering of a nonzero bit in

each column is (2’1”) Likewise, the number of possible lo-
cations of ns columns in the submatrix of 3 that excludes ny

columns is (* 1) and the number of different ordering of two

nonzero bits in each column is (QET). Repeating this pro-
cedure, we obtain that the number of possible 3’s of type n

i—1 s 2 . . .
is [0 (A X e=m) (3"7)™. Since we assume uniform in-
terleaving, the number of all possible permutations is (Z"dTL).
Therefore, by combining these, we obtain the probability in

(15). O

For a given d, the probability of the type n is Pr(n|d) and
the Hamming distance and the product distance are g (n) in
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Fig. 3. Probability of 65y # d (nr=2, d=5).

(13) and 4,(n) in (14), respectively. Fig. 2 plots the probability
distribution of 45 and (5;/ S for the case d = 8 when nt =
2, L = 130. From the figure, we observe that dy takes on
d(= 8) and 5,1,/ %% takes on 2 with a probability close to 1. In

fact, 0y takes on d if and only if 6,1,/ % takes on 2 due to (13)
and (14). The event that 6y takes on d occurs when ny = d,
ng = ng = ng = 0, which implies that there is no column of 3
for which 2 or more nonzero bits are allocated. Considering that
the diversity order is gn g and d is the maximum value that §
can take, we can expect that in the case of ST-BICM we obtain
the maximum diversity order in fast Rayleigh fading channels
with a high probability. In the following, we will evaluate the
probability that there exists at least one column where 2 or more
nonzero bits are allocated.

C. Maximum Diversity Order Property

In the above, we have shown that in the case of ST-BICM, 6y
takes on d and 5,1,/ % takes on 2 with a high probability. Here, we
take a closer look at the asymptotic behavior of the probability
to determine the cases when it does not apply.

Theorem 2: For a given Hamming weight d and a frame
length L, the probability that § 5 does not take on d is of order
oL 12

Proof: By (15), the probability of the complementary
event of 8y = d becomes

l—Pr(nlzd)zl—w
*"7")

d—1
(27LT — 1)]9
1—H<1—m>. (16)

k=0

Pr(on #d) =

3We write f(z) = O(g(x)) if there exist positive constants M and xg such
that | f(z)| < Mg(x) forall z > zy.

If we apply the following inequality*

N N
1-J[a-2) <) m 0<wi<1l, (A7)
=1 =1
we get
d—1 d—1
(2’!7,T - ].)k' (2nT — 1)]{?
P < <
10 # d) D onrL —k — 4~ 2npL — (d— 1)
k=0 k=0
Wy — _
_ (o -ndd-) -
dnrL —2(d 1)
which is of order O(L™1). O

Theorem 2 describes the maximum diversity order property
of ST-BICM in fast Rayleigh fading channels. The probability
that 07 does not take on d is inversely proportional to the frame
length L. In other words, as L becomes large, the probability
that ST-BICM has the maximum diversity order approaches 1.

Fig. 3 plots the probability of 65 # d in comparison with its
bound in (18) for the case d=5. We can observe that the upper
bound is very close to the true probability.

If 0y takes on d, then the pairwise error probability would
be the same as the case when each element of 3 is mapped
to a BPSK symbol € {+1/\/§, —1/\/5}, and this BPSK sym-
bol is transmitted over independent fading channels with sin-
gle transmit antenna. If the frame length is sufficiently long,
0m takes on d with probability close to 1, which implies that
the bit-interleaver transforms the ny-antenna QPSK space-time
code into the 1-antenna equivalent coded BPSK system where
each coded bit is transmitted over independent fading channels.
Based on this fact, we can predict the performance of ST-BICM
from that of the equivalent coded BPSK system in independent
fading channels.

IV. FER PERFORMANCE OF ST-BICM

Now we analyze the FER performance of ST-BICM using the
distance spectrum of the binary channel code in ST-BICM and
confirm that the performance of ST-BICM is similar to that of
the equivalent coded BPSK system in independent fading chan-
nels.

We apply the union bounding technique to obtain an upper
bound of FER for maximum likelihood (ML) decoding of ST-
BICM.? Then, the frame error probability of ST-BICM with
QPSK signaling can be expressed by

P(e) < 2nrrLY a4y Pp(Su(n),6y(n)) Pr(n|d), (19)
d n

where r denotes the code rate of the binary channel code, a4
the number of codewords whose Hamming weight is d, and
Pg(6p(n), 6,(n)) the PEP upper bound in (7) for a given type

4See Appendix for its proof.

51t is not tractable to obtain the performance bound of the communication sys-
tems employing iterative decoding, so we derive the bound of ST-BICM based
on ML decoding. Though the performance of iterative decoding is not guaran-
teed to converge to the ML performance, it has been empirically known to be
close to the ML performance.



34

ol

O‘

True bound

Frame Error Probability

Appr. bound
A————A ST-BICM (1 iter)
ST-BICM {2 iter)
7———% ST-BICM (4 iter)
Equiv. system

105 1 115 “2 12‘.5 1‘3
Symbol SNR per receive antenna (dB)

(a)

9 9.5 10 135 14

Frame Error Probability

o

@ - — - -0 True bound
% ~ — — —% Appr. bound
A————A ST-BICM (1 iter)
4+—< ST-BICM (2 iter)
V% ST-BICM (4 iter)
G——© Equiv. system

10 1 115 é 2%5 C;
Symbol SNR per receive antenna (dB)
©

Fig. 4. Frame error probability of ST-BICM whose channel code is a
4-state convolutional code with (a) one, (b) two, and (c) four receive
antennas (nr=2).

n.® If we also use the fact that § takes on d and &, takes on
2¢ with a probability close to 1, we get a simpler approximate
bound

P(e) ~ 2ngrL Y~ aaPp(d,27), (20)
d
where ~
d pumad _S
Pp(d.2%) = Janm (%) @

is the PEP of the 1-antenna equivalent coded BPSK system in
which each coded bit is transmitted over independent fading
channels with diversity order dng.

6For the case of time-invariant codes (e.g., convolutional codes), the sets of the
simple error events that start at different times are identical if the edge effect is
ignored. Since the number of input bits to the code is 2nrL, there are 2nprL
error events for a simple error event pattern. So, the FER bound based on union
bound is 2nprL times the first error probability. In contrast, for the case of
turbo codes, the sets of the simple error events that start at different times are
not identical and the effect of 2nr L is incorporated in a 4.
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Table 1. Distance spectrum of the convolutional code with generators

(7.5) in octal.
[(d]aa] d | a4 ]
5 1 10 32
6 2 11 64
7 4 12 ] 128
8 8 13 | 256
9| 16 14 | 512

From (19) and (20), we can observe that only the distance
spectrum of the channel codes is required to evaluate the FER
upper bound. Also note that the bound in (19) is the FER up-
per bound of ST-BICM in fast fading channels and the bound in
(20) is the FER upper bound of the equivalent coded BPSK sys-
tem where each coded bit is transmitted over independent fading
channels.

We now examine some numerical FER performance of ST-
BICM systems through simulations. We use the newly derived
true bound in (19) and the approximate bound in (20) to evalu-
ate the FER bounds and compare them with the simulation re-
sults. As we need only the distance spectrum of the channel code
to calculate the above FER bounds, the FER bounds are appli-
cable to any binary linear codes, such as convolutional codes,
turbo codes, and others. In evaluating the FER bounds, we
use the truncated distance spectrum, as the FER upper bounds
may be satisfactorily approximated by taking into account the
codewords whose Hamming distance is less than some prede-
termined value. We consider the smallest 10 Hamming dis-
tances. Table 1 lists the resulting number of simple etror events
of the convolutional code with the generators (7,5) in octal ex-
pression. For the simulations, we take 130 symbols per frame
(i.e., L = 130) and use random interleavers for bit interleavers.
We employ iterative demodulation-decoding method with per-
fect channel state information (CS]) at the receiver [10]. We
plot the resulting FER performance curves with respect to the
symbol SNR per receive antenna, nrEs/N,. We also evalu-
ate through simulations the FER performance of the equivalent
coded BPSK system in independent fading channels with the
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same generators. For this, we employ Viterbi decoding for an
ML performance.

Fig. 4 plots the resulting performance of ST-BICM whose
channel code is the 1/2-rate convolutional code with the gen-
erators (7,5) in octal expression. The three different graphs re-
spectively cover ST-BICM systems with one, two, and four re-
ceive antennas. Overlaid in each graph is the performance of the
equivalent coded BPSK system in independent fading channels
(nr = 2).

We observe from the three graphs that the performance of ST-
BICM approaches that of the equivalent coded BPSK system in
independent fading channels after four iterations.

We also observe from the simulation results that the FER
bounds are tight enough to estimate the performance of ST-
BICM with sufficient accuracy. Further, the true FER upper
bound in (19) and the approximate bound in (20) nearly coin-
cide. This testifies that the approximate bound can be used in-
stead of the true bound, which would bring forth a significant
computational reduction. Note that the approximate bound is
for the equivalent coded BPSK system in independent fading
and the true bound is for ST-BICM.

From the analyses and numerical results, we can confirm the
following properties of ST-BICM: First, the bit-interleavers uni-
formly spread the d bits from the channel code, so that the allo-
cated bits in each antenna seldom coincide. Second, d takes on
d with a high probability which approaches 1 for a large L (i.e.,
the maximum diversity order property). Third, we can obtain
the performance bound by substituting d for 4z and 2¢ for 6,,,
respectively, and this bound is so tight that it can be used to pre-
dict the performance of ST-BICM directly. Fourth, ST-BICM
in fast fading reduces to the equivalent coded BPSK system in
independent fading channels for a large value L.

V. CONCLUDING REMARKS

So far, we have studied the properties and performance of ST-
BICM systems in fast Rayleigh fading channels. In particular,
we have unveiled the effect of bit-interleaver by showing that it
transforms an ST-BICM system in fast fading channels into an
equivalent coded BPSK system in independent fading channels.
We have shown that ST-BICM systems in fast fading channels
have the uniform distance property and the maximum diversity
order property. Based on these properties, we have analyzed the
performance of ST-BICM.

The uniform distance property of ST-BICM in fast fading
channels implies that the error probability is independent of the
transmitted codewords. So, for the performance analysis we can
assume that the transmitted codeword is the space-time code-
word matrix corresponding to the all-zero codeword.

The maximum diversity order property means that for a given
Hamming distance the diversity order is maximized with a high
probability if the frame length becomes sufficiently long, which
is attributed to uniform bit-interleavers. It also implies that the
performance of ST-BICM in fast fading is equivalent to that
of the coded BPSK system in independent fading channels.
The bit-interleavers transform the n-antenna QPSK space-time
coded system over fast fading channels into the 1-antenna equiv-
alent coded BPSK system where each coded bit is transmitted

over independent channels.

For the performance analysis of ST-BICM in fast fading chan-
nels, we have derived an FER bound taking advantage of the
maximum diversity order property. Due to the maximum diver-
sity order property, the symbol-wise Hamming distance takes
the largest value with a high probability and the FER bound can
be simplified to an approximate bound that does not require ex-
pectation operation with respect to the interleavers. This helps
to reduce the computational complexity significantly. The de-
rived bound is very accurate, requires only the distance spectrum
of the binary channel code of ST-BICM, and can be computed
without any numerical integrations.

APPENDIX

Proof of Inequality (17)
We replace 1 — z; with y; in (17) and prove that

N N
Su<N-1+]]w
i=1 =1

We can prove it by mathematical induction.
It is trivial to show that (22) holds when N = 2. If we assume
that (22) holds for some K > 2, we get

(22)

K+1 K
dSow<K-1+][v+vxn (23)
i=1 i=1

If we apply (22) with N = 2 to the last two terms in (23), we

obtain
K+1 K+1

Z v <K+ H Yis
=1 i=1

and this completes the proof.

(24)
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