• Title/Summary/Keyword: bile acid production

Search Result 109, Processing Time 0.028 seconds

Optimizing the fermentation condition of low salted squid jeotgal by lactic acid bacteria with enhanced antioxidant activity

  • Akther, Fahima;Le, Bao;Chung, Gyuhwa;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • Lactic acid bacteria (LAB) are widely used as starter culture in food fermentation due to their harmless entity and health beneficial properties along with the ability to change texture, aroma, flavor and acidity of food products. In this study, five different LAB (FB003, FB058, FB077, FB081, and FB111) isolated from different Korean traditional fermented foods, assigned to Lactobacillus plantarum, Pediococcus pentosaceus, Weissella viridescens, Lactobacillus sakei, and Leuconostoc mesenteroides, respectively, on the basis of their physiological properties and 16S rRNA sequence analysis, to use as fermentation starter and check their ability to fasten the ripening time as well as the overall optimization in the fermentation condition. To check their suitability as starters, their safety, acid and bile tolerance, NaCl and temperature resistance, susceptibility to common antibiotics, and antimicrobial activities were determined. Squid jeotgal samples were prepared by adding $10^8CFU/g$ of each strain in different samples, which were then kept for fermentation at $4^{\circ}C$ and checked for their antioxidant activities at 0, 7, 15, and 21-day intervals. The samples fermented with FB003 and FB077 displayed the highest antioxidant activity. This study revealed two effective starter cultures (FB003, FB077) for squid jeotgal fermentation, which presented increased functionalities. The results of this study will lead to the development of novel industrial-scale production avenues for jeotgal preparation, and offer new insights into the prevention and control of chronic diseases.

Isolation and characterization of cholesterol-lowering lactic acid bacteria from kimchi (김치에서 분리된 콜레스테롤 감소능을 가진 젖산세균의 특성)

  • Park, Hong-Yeop;Park, Seul-Ki;Kim, Bo-Geum;Ryu, Dae-Gyu;Lim, Eun-Seo;Kim, Young-Mog
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.377-382
    • /
    • 2017
  • The objective of this study was to isolate and characterize lactic acid bacteria (LAB) exhibiting cholesterol-lowering activity from the Korean traditional fermented food, kimchi. The previously isolated LAB strains were assessed for cholesterol-lowering efficacy in the presence of 0.1% cholesterol. All LAB strains tested in this study were able to assimilate cholesterol at varying levels, ranging from 35.0 to 99.4%. Among them, the Lactobacillus plantarum FMB 31 strain exhibited the highest cholesterol-lowering effect with 99.4% cholesterol removal efficiency. The strain was stable in the presence of acid, bile, and salt stress, and showed high adherence on HT-29 cells, a human colon line. In addition, the LAB strain showed no pathogenic properties such as the production of hemolysin and biogenic amines. Thus, this study suggests that the L. plantarum FMB 31 strain isolated from kimchi can be a potential source of probiotic products with strong cholesterol-lowering effect.

Isolation of Garlic Resistant Lactic Acid Bacteria for Feed Additives (사료용 생균제 개발을 위한 마늘 내성 유산균의 분리)

  • Kim, Yu-Jin;Jang, Seo-Jung;Park, Jung-Min;Kim, Chang-Uk;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.352-359
    • /
    • 2009
  • Lactic acid bacteria was isolated for the production of probiotic animal feed supplemented with garlic and its antimicrobial properties were investigated. A total of 112 strains of lactic acid bacteria which grew on the medium containing garlic extract were isolated from kimchi, jeotgal, and jangachi. Among them 14 strains were tested for acidand bile salt-resistance as well as antimicrobial activities against animal pathogenic bacteria such as Salmonella choleraesuis, Escherichia coli, Staphylococcus aureus, and Shigella flexneri. Of these strains, a strain P'GW50-2 from pickled scallion with most desirable properties was selected and identified as Lactobacillus plantarum TJ-LP-002. Antimicrobial activity of L. plantarum TJ-LP-002 showed relatively wide range of inhibition spectrum against Gram negative bacteria such as Aeromicrobium hydrophila, E. coli, Pseudomonas, Salmonella, Shigella, and some Gram positive bacteria such as Bacillus cereus, Staphylococcus aureus, Clostridium perfringens, and Propionibacterium.

Hypocholesterolemic Response to Karaya Saponin and Rhodobacter capsulatus in Broiler Chickens

  • Afrose, Sadia;Hossain, Md. Sharoare;Maki, Takaaki;Tsujii, Hirotada
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.733-741
    • /
    • 2010
  • Dietary karaya saponin and Rhodobacter capsulatus (R. capsulatus) are known to have hypocholesterolemic actions, as reported in our previous studies. This study examined possible synergistic hypocholesterolemic effects of karaya saponin and R. capsulatus in broilers. A total of 150 broilers were allocated into 10 treatments: control, saponin 25 mg, saponin 50 mg, saponin 75 mg, saponin 25 mg+R. capsulatus 0.2 g, saponin 25 mg+R. capsulatus 0.4 g, saponin 50 mg+R. capsulatus 0.2 g, saponin 50 mg+R. capsulatus 0.4 g, saponin 75 mg+R. capsulatus 0.2 g and saponin 75 mg+R. capsulatus 0.4 g. Feed intake and feed efficiency were improved when karaya saponin and R. capsulatus were synergistically supplemented in the diet. Combinations of karaya saponin, especially supplementation of karaya saponin 50 mg+R. capsulatus 0.4 g were shown to have potential hypolipidemic actions in breast and thigh muscle cholesterol and triglycerides, serum cholesterol, low density lipoprotein-cholesterol and triglycerides, as well as improved high density lipoprotein (HDL)-cholesterol (p<0.05). Compared to the control, almost all the treatments significantly increased serum, liver and fecal concentrations of bile acids (p<0.05). Supplementation of both karaya saponin (75 mg) and saponin 50 mg+R. capsulatus 0.4 g reduced palmitic acid (C16:0) and stearic acid (C18:0) in a similar fashion (p<0.05). The ratios of PUFA:SFA or PUFA+MUFA:SFA in the thigh and breast muscle of broilers were greater in karaya saponin and R. capsulatus supplemented groups than in the control group. Thus, our study concluded that supplementation of karaya saponin synergistically with R. capsulatus in the diet of broilers is an effective way to obtain low-cholesterol, low-triglyceride and high HDL-cholesterol enriched poultry meat with a unique fatty acid balance.

Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese

  • Zhang, Bei;Wang, Yanping;Tan, Zhongfang;Li, Zongwei;Jiao, Zhen;Huang, Qunce
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1490-1499
    • /
    • 2016
  • In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42%) had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (p<0.001). Further screening performed on the above 20 isolates indicated that all 20 lactobacilli strains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin) in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%), Lactobacillus plantarum 1086-1 (82%), Lactobacillus casei 1089 (81%), Lactobacillus casei 1138 (79%), Lactobacillus buchneri 1059 (78%), Lactobacillus plantarum 1141 (75%), and Lactobacillus plantarum 1197 (71%). Together, these results suggest that these seven strains are good probiotic candidates, and that tolerance against bile acid, simulated gastric and intestinal juices, antimicrobial activity, antibiotic resistance, and cell surface hydrophobicity could be adopted for preliminary screening of potentially probiotic lactobacilli.

Physiological Characteristics and GABA Production of Lactobacillus acidophilus RMK567 Isolated from Raw Milk (원유에서 분리한 Lactobacillus acidophilus RMK567의 GABA 생성 및 생리적 특성)

  • Lim, Sang-Dong;Kim, Kee-Sung;Do, Jeong-Ryong
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • In order to develop a new starter for fermented milk, 2082 bacteria were isolated from raw milk. The strain that showed excellent acid forming and ${\gamma}$-aminobutyric acid (GABA) production ($711.40{\mu}g/g$ D.W) characteristics after incubation at $37^{\circ}C$ for 18 hr was selected and identified as Lactobacillus acidophilus by the result of API carbohydrate fermentation pattern and 16S rDNA sequence. L. acidophilus RMK567 was investigated for its physiological characteristics. RMK67 strain showed good GABA production compared with commercial lactic acid bacteria. The optimum growth temperature of L. acidophilus RMK567 was $40^{\circ}C$ and cultures took 15 hr to reach pH 4.3. L. acidophilus RMK567 showed higher sensitivity to penicillin-G, novobiocin, as compared to other 14 different antibiotics. However, it showed more resistance to kanamycin, neomycin, streptomycin. It showed higher leucine arylamidase and ${\beta}$-galactosidase activities compared to 16 other enzymes. It was comparatively tolerant to bile juice and able to survive at pH 2 for 3 hr. It showed resistence to Escherichia coli, Salmonella typhimurium and Staphylococcus aureus with rates of 29.2%, 39.1% and 51.4%, respectively. Based on these and previous results, L. acidophilus RMK567 could be an excellent starter culture for fermented milk with excellent GABA contents.

Antioxidant and Anti-Inflammatory Effect of Probiotic Lactobacillus plantarum KU15149 Derived from Korean Homemade Diced-Radish Kimchi

  • Han, Kyoung Jun;Lee, Ji-Eun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.591-598
    • /
    • 2020
  • Lactobacillus plantarum KU15149 was demonstrated to have probiotic behavior and functions, including antioxidant and anti-inflammatory activity. L. plantarum KU15149 obtained from homemade diced-radish kimchi has a high survival rate under artificial gastric acid (pH 2.5, 0.3% pepsin) and bile salt (0.3% oxgall) conditions. However, L. plantarum KU15149 did not produce β-glucuronidase, which is known to be a carcinogenic enzyme with resistance to several antibiotics, such as gentamycin, kanamycin, streptomycin, tetracycline, and ciprofloxacin. L. plantarum KU15149 strongly adhered to HT-29 cells and had high antioxidant activity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging and β-carotene bleaching assays. L. plantarum KU15149 also exhibited a pronounced inhibition of nitric oxide (NO) production, along with expression of nitric oxide synthase (iNOS) and cyclooxygenase -2 (COX-2) as well as pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, when RAW 264.7 cells were stimulated with LPS. Therefore, L. plantarum KU15149 exhibited pharmaceutical functionality as a potential probiotic.

Identification of Potential Bacillus subtilis Probiotics from Korean Soybean Paste and Their Antimicrobial and Immune Activities

  • Seo, Weon-Taek;Nam, Sang-Hae;Lee, Chang-Kwon;Cho, Kye-Man
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The potential probiotic of a total of 15 Bacillus species isolated from Korean soybean paste (doenjang) was evaluated. Among those tested, the CSY191 and CSY388 strains were selected as probiotic bacteria due to their acid and bile tolerance, respectively. These strains were classified as Bacillus subtilis based on morphological, physiological, and chemotaxonomic features as well as on phylogenetic analysis based on their 16S rDNA sequences. These strains CSY191 and CSY388 showed a significant survival with rate range of 30.0 to 58.3% and of 31.0% to 58.1%, respectively, under artificial gastric acidic conditions at pH 3.0. These CSY191 and CSY388 strains appeared to have high antimicrobial activity against Salmonella Typhimurium, Bacillus cereus and Listeria monocytogenes. Also, methanol extractions (surfactin-like compounds) of strain CSY191 and strain CSY388 activated RAW264.7 microphages and induced the production of nitric oxide (NO) in a concentration-dependent manner, respectively. Therefore, strain CSY191 and strain CSY388 can be used as potential probiotics.

In Vitro Stability of β-galactosidase Microcapsules

  • Kwak, H.S.;Kwon, S.H.;Lee, J.B.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1808-1812
    • /
    • 2002
  • The present study was carried out to examine the efficiency of microcapsules and a stability of lactase in vitro in the simulated gastric and intestinal conditions. As a coating materials, medium-chain triacylglycerol (MCT) and polyglycerol monostearate (PGMS) were used. The highest efficiency of microencapsulation was found in the ratio of 15:1 as coating to core material with both MCT (91.5%) and PGMS (75.4%). In a subsequent experiment, lactose content was measured to study a microcapsule stability. Lysis of microcapsules made by MCT in simulated gastric fluid was proportionally increased such as 3% in pH 5 and 11% in pH 2 for 20 min incubation. In the case of PGMS microcapsulation, 11-13% of lactose was hydrolyzed at 20 min in all pHs and also very little amount (less than 3%) of lactose was hydrolyzed after 20 min in all pHs. The highest percentages of lactose hydrolysis in MCT and PGMS microcapsules were 68.8 and 60.8% in pHs 7 and 8 during 60 min, respectively. Based on our data, the lactase microcapsules seemed to be stable when they stay in the stomach, and hydrolyzed rapidly in small intestine where the bile acid was excreted.

Physicochemical properties and shelf-life of low-fat pork sausages wrapped with active film manufactured by sodium alginate and cherry tomato powder

  • Qiu, Zhuang Zhuang;Chin, Koo Bok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1470-1476
    • /
    • 2020
  • Objective: This study was carried out to investigate physicochemical properties, and antioxidant and antimicrobial activities of low-fat sausages (LFSs) covered with sodium alginate (SA) film alone and with powder film (TSA-film) formed by cross-linking cherry tomato powder (CTP) and SA with calcium chloride (CaCl2). Methods: Sausages covered with the biodegradable film were assessed based on the measurement of pH, color (L, a, b), proximate analysis, expressive moisture (EM), texture profile analysis, total plate counts (TPC), violet red bile, and 2-Thiobarbituric acid reactive substances (TBARS) during storage under refrigeration. LFSs wrapped with TSA-film were compared with those wrapped with SA-film and without film (control) during storage at 10℃ for 35 days. Results: The LFSs covered with the mixed film had lower pH, lightness (L), EM%, TBARS, and TPC, but lower yellowness (b) and hardness values than those wrapped with TSA-film alone. Conclusion: Lipid oxidation and microbial growth was retarded in sausages covered with biodegradable films, especially multiple films as compared to single film, thereby resulting in extended shelf-life of the LFSs.