• Title/Summary/Keyword: big data ecosystem

Search Result 97, Processing Time 0.023 seconds

Evolution of ICT Ecosystem and Mobile Telcos' Counterstrategies (ICT 생태계 변화에 따른 국내 이동통신 사업자의 대응 전략에 대한 연구)

  • Kim, Dong Ju;Kang, Mincheol
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.2
    • /
    • pp.197-209
    • /
    • 2013
  • This study analyzes the nature of consumers and smart phones as well as its limitations that domestic mobile communication companies confront. According to the analysis results, emerging technologies such as 5G communication, pervasive computing, augmented reality, and big data seem to have significant effect on the ICT ecosystem in the near future. Based on the results, this study suggests four counterstrategies for domestic mobile communication companies: big data strategy, preparation of things acting as a main communication agent, new service platform development, and 'total life care service provider' strategy.

An Intelligent Machine Learning Inspired Optimization Algorithm to Enhance Secured Data Transmission in IoT Cloud Ecosystem

  • Ankam, Sreejyothsna;Reddy, N.Sudhakar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.83-90
    • /
    • 2022
  • Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.

Analysis of Research Trends of Ecosystem Service Related to Climate Change Using Big-data (빅데이터를 활용한 기후변화와 연계된 생태계서비스 연구 동향분석)

  • Seo, Ja-Yoo;Choi, Yo-Han;Baek, Ji-Won;Kim, Su-Kyoung;Kim, Ho-Gul;Song, Won-Kyong;Joo, Woo-Yeong;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.1-13
    • /
    • 2021
  • This study was performed to investigate the ecosystem service patterns in relation to climate change acceleration utilizing big data analysis. This study aimed to use big data analysis as one of the network of views to identify convergent thinking in two fields: climate change and ecosystem service. The keywords were analysed to ascertain if there were any differences in the perceiving problems, policy direction, climate change implications, and regional differences. In addition, we examined the research keywords of each continent, the centre of ecosystem service research, and the topics to be referred to in domestic research. The results of the analysis are as follows: First, the keyword centrality of climate change is similar to the detailed indicators of The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) regulations, content, and non-material ecosystem services. Second, the cross-analysis of terms in two journals showed a difference in value-oriented point; the Ecosystem Service Journal identified green infrastructure as having economic value, whereas the Climate Change Journal perceives water, forest, carbon, and biodiversity as management topics. The Climate Change Journal, but not the former, focuses on future predictions. Third, the analysis of the research topics according to continents showed that water and soil are closely related to the economy, and thus, play an important role in policy formulation. This disparity is due to differences in each continent's environmental characteristics, as well as economic and policy issues. This fact can be used to refer to the direction of research on ecosystem services in Korea. Consistent with the recent trend of expanding research regarding the impacts of climate change, it is necessary to study strategies to scientifically predict and respond to the negative effects of climate change.

Big Data Strategies for Government, Society and Policy-Making

  • LEE, Jung Wan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.475-487
    • /
    • 2020
  • The paper aims to facilitate a discussion around how big data technologies and data from citizens can be used to help public administration, society, and policy-making to improve community's lives. This paper discusses opportunities and challenges of big data strategies for government, society, and policy-making. It employs the presentation of numerous practical examples from different parts of the world, where public-service delivery has seen transformation and where initiatives have been taken forward that have revolutionized the way governments at different levels engage with the citizens, and how governments and civil society have adopted evidence-driven policy-making through innovative and efficient use of big data analytics. The examples include the governments of the United States, China, the United Kingdom, and India, and different levels of government agencies in the public services of fraud detection, financial market analysis, healthcare and public health, government oversight, education, crime fighting, environmental protection, energy exploration, agriculture, weather forecasting, and ecosystem management. The examples also include smart cities in Korea, China, Japan, India, Canada, Singapore, the United Kingdom, and the European Union. This paper makes some recommendations about how big data strategies transform the government and public services to become more citizen-centric, responsive, accountable and transparent.

AI Platform Solution Service and Trends (글로벌 AI 플랫폼 솔루션 서비스와 발전 방향)

  • Lee, Kang-Yoon;Kim, Hye-rim;Kim, Jin-soo
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Global Platform Solution Company (aka Amazon, Google, MS, IBM) who has cloud platform, are driving AI and Big Data service on their cloud platform. It will dramatically change Enterprise business value chain and infrastructures in Supply Chain Management, Enterprise Resource Planning in Customer relationship Management. Enterprise are focusing the channel with customers and Business Partners and also changing their infrastructures to platform by integrating data. It will be Digital Transformation for decision support. AI and Deep learning technology are rapidly combined to their data driven platform, which supports mobile, social and big data. The collaboration of platform service with business partner and the customer will generate new ecosystem market and it will be the new way of enterprise revolution as a part of the 4th industrial revolution.

  • PDF

Big Data Analysis and Prediction of Traffic in Los Angeles

  • Dauletbak, Dalyapraz;Woo, Jongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.841-854
    • /
    • 2020
  • The paper explains the method to process, analyze and predict traffic patterns in Los Angeles county using Big Data and Machine Learning. The dataset is used from a popular navigating platform in the USA, which tracks information on the road using connected users' devices and also collects reports shared by the users through the app. The dataset mainly consists of information about traffic jams and traffic incidents reported by users, such as road closure, hazards, accidents. The major contribution of this paper is to give a clear view of how the large-scale road traffic data can be stored and processed using the Big Data system - Hadoop and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using Business Intelligence and prediction with classification machine learning model on the sampled traffic data is presented using Azure ML. The process of modeling, as well as results, are interpreted using metrics: accuracy, precision and recall.

Addressing Big Data solution enabled Connected Vehicle services using Hadoop (Hadoop을 이용한 스마트 자동차 서비스용 빅 데이터 솔루션 개발)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.607-612
    • /
    • 2015
  • As the amount of vehicle's diagnostics data increases, the actors in automotive ecosystem will encounter difficulties to perform a real time analysis in order to simulate or to design new services according to the data gathered from the connected cars. In this paper, we have conducted a study of a Big Data solution that expresses the essential deep analytics to process and analyze vast quantities of vehicles on board diagnostics data generated by cars. Hadoop and its ecosystems have been deployed to process a large data and delivered useful outcomes that may be used by actors in automotive ecosystem to deliver new services to car owners. As the Intelligent transport system is involved to guarantee safety, reduce rate of crash and injured in the accident due to speed, addressing big data solution based on vehicle diagnostics data is upcoming to monitor real time outcome from it and making collection of data from several connected cars, facilitating reliable processing and easier storage of data collected.

Anomaly Detection Technique of Log Data Using Hadoop Ecosystem (하둡 에코시스템을 활용한 로그 데이터의 이상 탐지 기법)

  • Son, Siwoon;Gil, Myeong-Seon;Moon, Yang-Sae
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.128-133
    • /
    • 2017
  • In recent years, the number of systems for the analysis of large volumes of data is increasing. Hadoop, a representative big data system, stores and processes the large data in the distributed environment of multiple servers, where system-resource management is very important. The authors attempted to detect anomalies from the rapid changing of the log data that are collected from the multiple servers using simple but efficient anomaly-detection techniques. Accordingly, an Apache Hive storage architecture was designed to store the log data that were collected from the multiple servers in the Hadoop ecosystem. Also, three anomaly-detection techniques were designed based on the moving-average and 3-sigma concepts. It was finally confirmed that all three of the techniques detected the abnormal intervals correctly, while the weighted anomaly-detection technique is more precise than the basic techniques. These results show an excellent approach for the detection of log-data anomalies with the use of simple techniques in the Hadoop ecosystem.

Big data, how to balance privacy and social values (빅데이터, 프라이버시와 사회적 가치의 조화방안)

  • Hwang, Joo-Seong
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.143-153
    • /
    • 2013
  • Big data is expected to bring forth enormous public good as well as economic opportunity. However there is ongoing concern about privacy not only from public authorities but also from private enterprises. Big data is suspected to aggravate the existing privacy battle ground by introducing new types of privacy risks such as privacy risk of behavioral pattern. On the other hand, big data is asserted to become a new way to by-pass tradition behavioral tracking such as cookies, DPIs, finger printing${\cdots}$ and etc. For it is not based on a targeted person. This paper is to find out if big data could contribute to catching out behavioral patterns of consumers without threatening or damaging their privacy. The difference between traditional behavioral tracking and big data analysis from the perspective of privacy will be discerned.

Structuring of unstructured big data and visual interpretation (부산지역 교통관련 기사를 이용한 비정형 빅데이터의 정형화와 시각적 해석)

  • Lee, Kyeongjun;Noh, Yunhwan;Yoon, Sanggyeong;Cho, Youngseuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1431-1438
    • /
    • 2014
  • We analyzed the articles from "Kukje Shinmun" and "Busan Ilbo", which are two local newpapers of Busan Metropolitan City. The articles cover from January 1, 2013 to December 31, 2013. Meaningful pattern inherent in 2889 articles of which the title includes "Busan" and "Traffic" and related data was analyzed. Textmining method, which is a part of datamining, was used for the social network analysis (SNA). HDFS and MapReduce (from Hadoop ecosystem), which is open-source framework based on JAVA, were used with Linux environment (Uubntu-12.04LTS) for the construction of unstructured data and the storage, process and the analysis of big data. We implemented new algorithm that shows better visualization compared with the default one from R package, by providing the color and thickness based on the weight from each node and line connecting the nodes.