Browse > Article
http://dx.doi.org/10.22937/IJCSNS.2022.22.6.14

An Intelligent Machine Learning Inspired Optimization Algorithm to Enhance Secured Data Transmission in IoT Cloud Ecosystem  

Ankam, Sreejyothsna (Dept Of CSE, JNTUA)
Reddy, N.Sudhakar (Dept Of CSE, SVCE)
Publication Information
International Journal of Computer Science & Network Security / v.22, no.6, 2022 , pp. 83-90 More about this Journal
Abstract
Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.
Keywords
Security; Cloud Computing; Cloud-IoT ecosystem; Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mukherjee, M.; Shu, L.; Wang, D. Survey of fog computing: Fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1-30.   DOI
2 Maheswari, K.; Bhanu, S.S.; Nickolas, S. A Survey on Data Integrity Checking and Enhancing Security for Cloud to FogComputing. In Proceedings of the IEEE Xplore, Bangalore, India, 5-7 March 2020; pp. 121-127.
3 Deshmukh, U.; More, S.A. Fog Computing: New Approach in the World of Cloud Computing. FInt. J. Innov. Res. Comput.Commun. Eng. 2016, 4, 16310-16316.
4 Maag, B.; Zhou, Z.; Thiele, L. A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet Things J. 2018, 5, 1-15.   DOI
5 Yassein, M.B.; Shatnawi, M.Q.; Aljwarneh, S.; Al-Hatmi, R. Internet of Things: Survey and open issues of MQTT protocol. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8-10 May 2017.
6 Groover, M. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2020.
7 Puliafito, C.; Vallati, C.; Mingozzi, E.; Merlino, G.; Longo, F.; Puliafito, A. Container Migration in the Fog: A Performance Evaluation. Sensors 2019, 19, 1488.   DOI
8 Gil, D.; Ferrandez, A.; Mora-Mora, H.; Peral, J. Internet of things: A review of surveys based on context aware intelligent services. Sensors 2016, 16, 1069.   DOI
9 Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends, Architectures, Requirements, and Research Directions. IEEE Access 2018, 4, 1-31.
10 Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347-2376.   DOI
11 Luan, T.H.; Gao, L.; Li, Z.; Xiang, Y.; Wei, G.; Sun, L. Fog computing: Focusing on mobile users at the edge. arXiv 2015, arXiv:1502.01815
12 Weerasiri, D.; Barukh, M.C.; Benatallah, B.; Sheng, Q.Z.; Ranjan, R. A Taxonomy and Survey of Cloud Resource Orchestration Techniques. ACM Comput. Surv. 2017, 50, 1-41.   DOI
13 Sniderman, B.; Mahto, M.; Cotteleer, M.J. Industry 4.0 and Manufacturing Ecosystems; Deloitte University Press: London, UK, 2016; pp. 1-23.
14 Corotinschi, G.; Gaitan, V.G. Enabling IoT connectivity for Modbus networks by using IoT edge gateways. In Proceedings of the 2018 International Conference on Development and Application Systems (DAS), Suceava, Romania, 24-26 May 2018; pp. 175-179.
15 Geissbauer, R.; Schrauf, S.K.V. Industry 4.0-Opportunities and Challanges of the Industrial Internet. Available online: https://www.strategyand.pwc.com/gx/en/insights/2015/industrial-internet.html (accessed on 2 February 2021).
16 Franko, A.; Vida, G.; Varga, P. Reliable Identification Schemes for Asset and Production Tracking in Industry 4.0. Sensors 2020, 20, 3709.   DOI
17 Massaro, A.; Galiano, A. Re-engineering process in a food factory: An overview of technologies and approaches for the design of pasta production processes. Prod. Manuf. Res. 2020, 8, 80-100.
18 Maiti, P.; Shukla, J.; Sahoo, B.; Turuk, A.K. QoS-aware fog nodes placement. In Proceedings of the 2018 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15-17 March 2018; pp. 1-6.
19 Perera, C.; Qin, Y.; Estrella, J.C.; Reiff-Marganiec, S.; Vasilakos, A.V. Fog Computing for Sustainable Smart Cities. ACM Comput. Surv. 2017, 50, 1-44.   DOI