• Title/Summary/Keyword: bifurcation analysis

Search Result 266, Processing Time 0.021 seconds

Optimization of Flip Angle at Head & Neck MR Angiography using Gadoteridol (Gadoteridol을 이용한 Head & Neck MR Angiography에서의 적정 Flip Angle)

  • Jeong, Hyunkeun;Kim, Mingi;Song, Jaejun;Nam, Kichang;Choi, Hyunsung;Jeong, Hyundo;Kim, Hochul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.151-159
    • /
    • 2016
  • In this research, we tried to suggest moderate FA(Flip Angle) for CE(Contrast Enhnaced)-Head&Neck MR Angiography with Gadoteridol. For this study, we did test MR phantom and clinical study according to FA change. After that, quantitative analysis was progressed. The results of MR phantom study were as follow: RSP(Reaction Starting Point)was recorded within 300~400 mmol. MPSI(Max Peak Signal Intensity) was 2,086, 3,705, 5,109, 6,194, 7.096, 7,192 [a.u]. MPP(Max Peak Point) was shown at 30, 50, 50, 40, 50, 40 mmol. IRMPSI(Increase Rate of MPSI) was 77.6%, 37.9%, 21.2%, 14.6%, 1.4% as increasing of FA. The results of clinical study were as follow SICB(Signal Intensity of Carotid artery Bifurcation) was recorded respectively 392.5, 4165.2, 4270, 3502.2, 3263.7, 3119.6 [a.u]. ORA(Occurence Rate of Artifact) was increased as 0, 0, 20, 40, 50, 70%. According to this research, we are not only able to assure that increase of FA can be effect on H1 spin's SI(Signal Intensity) which was combined with gadolinium agent, but also be effect on artifact rate in blood vessel. In clinical field, we expect that CE-Head&Neck MR Angiography can be performed in a practical way with this research.

Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System (PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화)

  • Sung, Sun-Kyung;Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE (분지관 내 물체 주위 맥동류에 대한 CFD 해석)

  • Hwang, D.Y.;Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

DYNAMIC ANALYSIS OF A PERIODICALLY FORCED HOLLING-TYPE II TWO-PREY ONE-PREDATOR SYSTEM WITH IMPULSIVE CONTROL STRATEGIES

  • Kim, Hye-Kyung;Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.225-247
    • /
    • 2010
  • In this paper, we establish a two-competitive-prey and one-predator Holling type II system by introducing a proportional periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for the predator at different fixed time. We show the boundedness of the system and find conditions for the local and global stabilities of two-prey-free periodic solutions by using Floquet theory for the impulsive differential equation, small amplitude perturbation skills and comparison techniques. Also, we prove that the system is permanent under some conditions and give sufficient conditions under which one of the two preys is extinct and the remaining two species are permanent. In addition, we take account of the system with seasonality as a periodic forcing term in the intrinsic growth rate of prey population and then find conditions for the stability of the two-prey-free periodic solutions and for the permanence of this system. We discuss the complex dynamical aspects of these systems via bifurcation diagrams.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Chaotic Rocking Vibration of a Rigid Block with Sliding Motion Under Two-Dimensional Harmonic Excitation

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1040-1053
    • /
    • 2002
  • This research deals with the influence of nonlinearities associated with impact and sliding upon the rocking behavior of a rigid block, which is subjected to two-dimensional horizontal and vertical excitation. Nonlinearities in the vibration were found to depend strongly on the effect of the impact between the block and the base, which involves an abrupt reduction in the system's kinetic energy. In particular, when sliding occurs, the rocking behavior is substantially changed. Response analysis using a non-dimensional rocking equation was carried out for a variety of excitation levels and excitation frequencies. The chaos responses were observed over a wide response region, particularly, in the cases of high vertical displacement and violent sliding motion, and the chaos characteristics appear in the time histories, Poincare maps, power spectra and Lyapunov exponents of the rocking responses. The complex behavior of chaotic response, in phase space, is illustrated by the Poincare map. The distribution of the rocking response is described by bifurcation diagrams and the effects of sliding motion are examined through the several rocking response examples.

An Integrated Ecological-Economic System Dynamics Model Analysis on the Ecosystem Restoration Policy (II): Extensions and Relaxations of the Model of King Crabs in the Imjin River, Korea (생태계 복원사업의 생태.경제 통합체계 동태분석(II) -임진강 참게 복원사업의 확장모형-)

  • Jeong, Hoi-Seong;Jeon, Dae-Uk
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.97-120
    • /
    • 2006
  • This paper deals with the extension of and discussion on the System Dynamics model (Jeong & Jeon, 2005) of river crabs in Korea. The previous model has been elaborated to empirically search for the optimal restoration and harvest rates of crabs in the Imjin River, on the basis of theoretical models of population dynamics in the field of bio-mathematics and environmental economics. In this paper, the authors tries to couple a series of new feedback loops related to density restrictions and cannibalistic behaviors with a stage-structured model of the crab ecosystem, and also to endogenize the parameter of baby crabs' survival that is caused by water quality improvement and income increase. Through these extensions and relaxations, the authors are able to argue about the strategic decision of the optimal rates additional considerations as well as the properties of the integrated system that was not covered in the previous paper.

  • PDF

A Study on the Unstable behavior according to Lode and boundary condition of shelled space frame structure (쉘형 스페이스 프레임 구조물의 하중 및 경계조건에 따른 불안정 거동에 관한 연구)

  • Kim, Nam-Seok;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.80-85
    • /
    • 2008
  • This paper investigate the structure instability properties of the shelled space frame structure. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. In this study, it is compared unstable behavior according to lode and boundary condition of the shelled space frame structure through numerical method which considered geometrical nonlinear and grasped influence for the instability phenomenon and investigated the fundamental collapse mechanism.

  • PDF

Unstable Behaviour and Critical Buckling Load of Framed Large Spatial Structures in accordance with the Variation of Joint Rigidity (프레임형 대공간 구조물의 절점강성변화에 따른 불안정 현상과 임계좌굴하중)

  • Shon, Su-Deok;Lee, Seung-Jae;Lee, Dong-Woo;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.47-56
    • /
    • 2014
  • This paper investigates the characteristics of unstable behaviour and critical buckling load by joint rigidity of framed large spatial structures which are sensitive to initial conditions. To distinguish the stable from the unstable, a singular point on equilibrium path and a critical buckling level are computed by the eigenvalues and determinants of the tangential stiffness matrix. For the case study, a two-free node example and a folded plate typed long span example with 325 nodes are adopted, and these adopted examples' nonlinear analysis and unstable characteristics are analyzed. The numerical results in the case of the two-free node example indicate that as the influence of snap-through is bigger; that of bifurcation buckling is lower than that of the joint rigidity as the influence of snap-through is lower. Besides, when the rigidity decreases, the critical buckling load ratio increases. These results are similar to those of the folded-typed long span example. When the buckling load ratio is 0.6 or less, the rigidity greatly increases.

Analysis of Bypass Grafting Effects in Stenosed Coronary Arteries (협착이 발생된 관상동맥에 대한 이식우회로술의 효과분석)

  • Kim, Hyoung-Ho;Suh, Sang-Ho;Lee, Jeong-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • Bypass anastomosis is frequently adopted for surgical treatments of stenosed coronary arteries. Optimal coronary bypass grafting should be investigated to improve the patency in arterial bypass techniques. The objective of this study is to analyze the effects of Y-grafting bypasses and T-grafting bypasses for various bifurcation and anastomotic angles. In order to find the optimal geometric configuration, the hemodynamic characteristics are obtained and compared with each other for different geometries. We found that both the left anterior descending artery (LAD) and left circumflex artery (LCX) blood flows were distributed evenly when the bypass grafting angle and bifurcated angle were $30^{\circ}$ and $15^{\circ}$, respectively,.