• Title/Summary/Keyword: bias estimator

Search Result 180, Processing Time 0.024 seconds

Fault detection and diagnosis for a tank level system by bias estimator (바이어스 추정기에 의한 탱크 레벨시스템 고장검출 및 진단)

  • 이철용;박정화;유재형;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.71-75
    • /
    • 1991
  • This paper deals with designing a real-time fault and accommodation system. The LQG controller is adopted in the normal state and the output of LQG controller is corrected using Separated Bias Estimator in the faulty state. The proposed scheme has been applied to the two-tank control system and showed satisfactory performance.

  • PDF

A Study of Instrument Failure Detection in PWR Pressurizer (PWR 가압기의 계측장치 고장 진단에 관한 연구)

  • 천희영;박귀태;박승엽;김인성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.678-684
    • /
    • 1987
  • The identification problem of instrument faults in PWR pressurizer is considered. The instrument failure detection technique in this paper consists of two filters, a normal-mode Kalman filter which estimates plant states in normal operation and a bias estimator which estimates the magnitudes and directions of bias faults. The concept of threshold based on the residual of a Kalman filter in normal operation is introduced. The bias estimator is driven when the absolute value of residual exceeds the threshold. The suggested failure detection algorithm is applied to a PWR pressurizer. Computer simulations show that the prompt detection of bias fault can be performed very successfully when there exist instrument faults.

  • PDF

Fault Tolerant Control for Nonlinear Boiler System (비선형 보일러 시스템에서의 이상허용제어)

  • Yoon, Seok-Min;Kim, Dae-Woo;Lee, Myung-Eui;Kwon, O-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

An alternative method for estimating lognormal means

  • Kwon, Yeil
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.351-368
    • /
    • 2021
  • For a probabilistic model with positively skewed data, a lognormal distribution is one of the key distributions that play a critical role. Several lognormal models can be found in various areas, such as medical science, engineering, and finance. In this paper, we propose a new estimator for a lognormal mean and depict the performance of the proposed estimator in terms of the relative mean squared error (RMSE) compared with Shen's estimator (Shen et al., 2006), which is considered the best estimator among the existing methods. The proposed estimator includes a tuning parameter. By finding the optimal value of the tuning parameter, we can improve the average performance of the proposed estimator over the typical range of σ2. The bias reduction of the proposed estimator tends to exceed the increased variance, and it results in a smaller RMSE than Shen's estimator. A numerical study reveals that the proposed estimator has performance comparable with Shen's estimator when σ2 is small and exhibits a meaningful decrease in the RMSE under moderate and large σ2 values.

A Study on Properties of the survival function Estimators with Weibull approximation

  • Lee, Jae-Man;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.279-287
    • /
    • 2003
  • In this paper we propose a local smoothing of the Nelson type estimator for the survival function based on an approximation by the Weibull distribution function. It appears that Mean Square Error and Bias of the smoothed estimator of the Nelson type survival function estimators are significantly smaller than that of the smoothed estimator of the Kaplan-Meier survival function estimator.

  • PDF

AN APPROXIMATE DISTRIBUTION OF THE SQUARED COEFFICIENT OF VARIATION UNDER GENERAL POPULATION

  • Lee Yong-Ghee
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.3
    • /
    • pp.331-341
    • /
    • 2006
  • An approximate distribution of the plug-in estimator of the squared coefficient of variation ($CV^2$) is derived by using Edgeworth expansions under general population models. Also bias of the estimator is investigated for several important distributions. Under the normal distribution, we proposed the new estimator for $CV^2$ based on median of the sampling distribution of plug-in estimator.

Design-Based Properties of Least Square Estimators of Panel Regression Coefficients Based on Complex Panel Data (복합패널 데이터에 기초한 최소제곱 패널회귀추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.515-525
    • /
    • 2010
  • We investigated design-based properties of the ordinary least square estimator(OLSE) and the weighted least square estimator(WLSE) in a panel regression model. Given a complex data we derive the magnitude of the design-based bias of two estimators and show that the bias of WLSE is smaller than that of OLSE. We also conducted a simulation study using Korean welfare panel data in order to compare design-based properties of two estimators numerically. In the study we found the followings. First, the relative bias of OLSE is nearly two times larger than that of WLSE and the bias ratio of OLSE is greater than that of WLSE. Also the relative bias of OLSE remains steady but that of WLSE becomes smaller as the sample size increases. Next, both the variance and mean square error(MSE) of two estimators decrease when the sample size increases. Also there is a tendency that the proportion of squared bias in MSE of OLSE increases as the sample size increase, but that of WLSE decreases. Finally, the variance of OLSE is smaller than that of WLSE in almost all cases and the MSE of OLSE is smaller in many cases. However, the number of cases of larger MSE of OLSE increases when the sample size increases.

Ratio Cum Regression Estimator for Estimating a Population Mean with a Sub Sampling of Non Respondents

  • Kumar, Sunil
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.663-671
    • /
    • 2012
  • In the present study, a combined ratio cum regression estimator is proposed to estimate the population mean of the study variable in the presence of a non-response using an auxiliary variable under double sampling. The expressions of bias and mean squared error(MSE) based on the proposed estimator is derived under double (or two stage) sampling to the first degree of approximation. Some estimators are also derived from the proposed class by allocating the suitable values of constants used. A comparison of the proposed estimator with the usual unbiased estimator and other derived estimators is carried out. An empirical study is carried out to demonstrate the performance of the suggested estimator and of others; it is endow that the empirical results backing the theoretical study.

Estimation of Doppler Spectrum Modes in a Weather Radar for Detection of Hazardous Weather Conditions

  • Lee, Jong-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.205-210
    • /
    • 2002
  • In a Doppler weather radar, high resolution windspeed profile measurements are needed to provide the reliable detection of hazardous weather conditions. For this purpose, the pulse pair method is generally considered to be the most efficient estimator, However, this estimator has some bias errors due to asymmetric spectra and may yield meaningless results in the case of a multimodal return spectrum. Although the poly-pulse pair method can reduce the bias errors of skewed weather spectra, the modes of spectrum may provide more reliable information than the statistical mean for the case of a multimodal or seriously skewed spectrum. Therefore, the idea of relatively simple mode estimator for a weather radar is developed in this paper, Performance simulations show promising results in the detection of hazardous weather conditions.

Minimum Hellinger Distance Estimation and Minimum Density Power Divergence Estimation in Estimating Mixture Proportions

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1159-1165
    • /
    • 2005
  • Basu et al. (1998) proposed a new density-based estimator, called the minimum density power divergence estimator (MDPDE), which avoid the use of nonparametric density estimation and associated complication such as bandwidth selection. Woodward et al. (1995) examined the minimum Hellinger distance estimator (MHDE), proposed by Beran (1977), in the case of estimation of the mixture proportion in the mixture of two normals. In this article, we introduce the MDPDE for a mixture proportion, and show that both the MDPDE and the MHDE have the same asymptotic distribution at a model. Simulation study identifies some cases where the MHDE is consistently better than the MDPDE in terms of bias.

  • PDF