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AN APPROXIMATE DISTRIBUTION OF THE SQUARED
COEFFICIENT OF VARIATION UNDER GENERAL
POPULATION'

YONGHEE LEE!

ABSTRACT

An approximate distribution of the plug-in estimator of the squared co-
efficient of variation (CV?) is derived by using Edgeworth expansions under
general population models. Also bias of the estimator is investigated for sev-
eral important distributions. Under the normal distribution, we proposed
the new estimator for CV? based on median of the sampling distribution of
plug-in estimator.
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1. INTRODUCTION

The squared coefficient of variation CV? represents the squared ratio of stan-
dard deviation to the mean for the given distribution

0,2

ZE )

where £ and ¢ are the mean and the standard deviation, respectively, of a given

CV? =

distribution. It is the commonly used as a measure for comparing degree of vari-
ation with one distribution with another, even if the means of two distributions
are different.

The squared coefficient of variation is used for the measure comparing in-
equality of certain indices across regions and times in economics. In fact, the
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squared coeflicient of variation is a special case of the class of generalized entropy
measures for inequality (Cowell, 1995). Also in survey sampling and clinical tri-
als, the formula for sample size determination is the function of CV? so that it is
important to assess information about population CV? from available resources
such as data from small pilot studies.
/\In practice, the population CV? is estimated by the simple plug-in estimator
CV? and it is a just squared ratio of sample standard deviation to sample mean
2
ovi=2 (11)
X
where X and S? are the sample mean and the sample variance, respectively, of the
independent sample X7, Xo,...,X,, from a given population distribution. Even
though the estimator in (1.1) has its simple form the sampling distribution of
CV2 is not explicitly tractable. Even though CV2 has been extensively used for
the sample size determination in clinical trials and survey sampling as well as for
comparing inequality in economics, its sampling or asymptotic properties are not
well developed. Recently, in ego\nometrics, there have been some efforts to find
the asymptotic properties o/f\CV2. Breunig (2001) derived the asymptotic bias
and mean squared error of CV? and Giles (2005) used a small sigma expansion to
derive the asymptotic bias of the general entropy measures including the squared
(Qe\fﬁcient of variation. In this paper, the approximation to the distribution of
CV? based on Edgeworth expansions is considered.

2. AN APPROXIMATE DISTRIBUTION OF ESTIMATOR OF CV? UNDER
GENERAL POPULATIONS

Edgeworth expansion is an asymptotic expansion to approximate the distribu-
tion of a given estimator 6y, of unknown parameter § when the limiting distribu-
tion of @, is the normal distribution. Suppose that we are interested in approxi-
mating the distribution of the standardized statistics U, = /n(8, —0p)/T where n
is the sample size and 72 is the asymptotic variance of 6. Let My, (t) = E(e!Un)
be the moment generating function of U,. Also let Ky, (t) = log My, (t) be the
cumulant generating function of U, and KT(U ) be the r** cumulant of U,.

Under some regularity conditions, the r%* cumulant of Un is of the order of
n~("=2)/2 3nd have an expansion with the power series in n~" such that

kr(Un) = n~(r—2)/2 [Hﬂ +n Yoo + N 2R3 + - - ] , r>1,
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where k11 = 0 and k2, = 1. The Edgeworth expansion of distribution of Uy, up
to the second order is given by

P(U, <) = 8(t) +n Ppi(8)$(t) + O(n ), (2.1)
where ®(¢) is the distribution function of the standard normal distribution and
pl(t) = — {le + é/ﬁgl(tz — 1)}

and ¢(t) is the density of the standard normal distribution. The excellent review
for Edgeworth expansions is given in Hall (1992).

Suppose Xi,...,X, are independent sample from a given distribution with
the population mean ¢ and variance 2. We assume that the distribution is non-
degenerate and absolutely continuous, which guarantees existence of Edgeworth
expansion. The parameter of interest is the population squared coefficient of
variation (0 = ¢%/£2%). The sample squared coefficient of variation is defined as
the commonly used plug-in estimator such that

2
én = _5_2 )
X
where X is a sample mean and S? = Y (X; — X)?/n is a sample variance. Also
we will assume that the population mean £ is not zero for the proper definition
of coefficient of variation. Let 72 be the asymptotic variance of 0,, and define the
p** central moment of X as m, = E(X — £)P and the standardized p** central
moment of X as v, = E(X — §)P/oP.

PROPOSITION 2.1. Under some regularity conditions, the Edgeworth expan-
sion of distribution of U, = v/n(6, —0)/7 up to the second order is given by (2.1)
with _

() =— {Al’T_l + %A27“3(t2 -1}

and
72 = 46°% + (74 — 1)8% — 4736°/2, (2.2)
Ap =367 — 2v36%2 — 9, (2.3)
Ag = 160° — 6750772 + 74(366* — 36%) — 12747307/ + 12(426%/% — 66%)

— v3(1280%/% — 4807/% — 126%/%) + 726° — 606* + 26°, (2.4)

where A1 and A2 are the first order term of the bias correction and skewness
correction, respectively, in asymptotic expansion of cumulant of Uy,.
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The regularity conditions and details of proof about Proposition 2.1 are given in
Section 4.

REMARK 2.1. (Bias of 6\72) Since E[n'/2(8, — 0)] = n~/24; + O(n~1) in
Section 4, the bias of 8, has the asymptotic expansion such as
E@,) —0=n"TA +0(n %) = n71(36° — 2362 — 0) + O(n3/?)
which implies that A; is the leading term in the asymptotic expansion of bias.

REMARK 2.2. (Normal distribution). If the population distribution is the
normal distribution with mean ¢ and variance o2, we have

v3=7v5=0, 74 =3 and ~=15.
Hence, the asymptotic variance of 8,, A; and A in (2.2), (2.3) and (2.4) can be
simplified as
T2 =46° +20°, A; =300, Ay =T26°+ 480" +86°.
In particular, the bias of 8, has the asymptotic expansion
E(fn) — 0 =n"1(36% — 0) + O(n™%2), (2.5)
where the leading term is proportional to §2.

REMARK 2.3. (Gamma distribution). If the population distribution is gamma
distribution with the density

= ——Lwa"l exp(—x

the squared coefficient of variation is § = a~! and the p** cumulant of gamma
distribution is given by x, = (p — 1)!afP. Using the formulae for the relation
between cumulants and central moments in Kendall et al. (1987), we have
2=2a24+2a72% A=-a?-al, Ay =320+ 400~ + 32073,
which also implies
T2 =203 +20%, A= -6%-0, Ay=320°+406"+ 326°.
Since the sign of A; is negative, it can be known that the asymptotic bias of 0,

is negative when gamma distribution is assumed.

REMARK 2.4. (Exponential distribution). The exponential distribution is a
special case of gamma distribution with a = 1 so that the squared coefficient of
variation is a constant with 8 = 1 and it is easily shown that

7"2 = 4, Al = —2’ A2 = ].04.
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3. AN IMPROVED ESTIMATOR OF CV? UNDER THE NORMAL
POPULATION

In t/h\e previous section, the asymptotic expansion of sampling distribution of
6, = CV? is derived under several important distributions by using Edgeworth
expansion and also asymptotic expansion of bias is obtained. Under the normal
distribution, it is shown that the bias of §, increases as the order of 62 (see
Remark 2.2). This implies the bias is proportional to £~2 as the population
mean ¢ converges to 0. For this reason in practice, use of 0, is restricted if the
population mean is close to 0 under the normal population. Here, we derive the
asymptotic expansion of median of the sampling distribution of 0, and propose
the new estimator which has the smaller bias and mean squared error than O,

The Fisher-Cornish expansion is an asymptotic expansion of the quantile of
a given distribution and it is obtained by inverting the Edgeworth expansion of
a given distribution. Details of Fisher-Cornish expansions is given in Hall (1983,
1992). Define x4 as the a-quantile of Uy, = n'/2(f, — 0)/7 such as

P{n'?(0, — 0)/7 < 24} = .
Then, by Fisher-Cornish expansion, a-quantile z, has the following expansion
To = Zo — n“l/zpl(za) +0(n™h), (3.1)

where p;(t) is the first leading term of the Edgeworth expansion of U, in (2.1)
and z, is the a-quantile of standard normal distribution.
Let 8g.5 be the median of sampling distribution of #,, such that

P(6, < fy5) = 0.5.

Then, by Fisher-Cornish expansion in (3.1) and since zp5 = 0, g5 has one-term
expansion

Oos = 0+ n—1/27'x0_5
=0+n1(A - %AQ’T_z) +o(n7Y). (3.2)

If the normal distribution is assumed as in Remark 2.2, the difference between
605 and @ in the equation (3.2) has the following expansion

Oos —0 = n" (A — %AQT_z) +o(n™1)
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7285 + 480* 4 86°
S | 2 -1
=n (39 -0 540% 1 1207 >+o(n )

=n"! [392 —0- {302 + g + 1—12 + 0(0—1)}] +o(n7Y)
— ! {—ge N 0(9—1)} +o(n™L), (3.3)

where the expansion in 0 is valid as @ converges to infinity (i.e. the population
mean converges to 0). While the leading bias term of 6,, under normal distribution
in (2.5) is proportional to 62, the leading term in expansion of fy5 — @ is now
proportional to 8. This fact implies if an estimator for 6y 5 is available, it may have
less bias than 8, in estimating CV2. Note that median g5 is not the population
median of the normal distribution which is same as the population mean £, but
it is the median of sampling distribution of én.

It is not easy to find an estimator of the median of 0,, since the sampling
distribution of 6, is not explicitly derived. However, we can use bootstrap to
approximate the sampling distribution of 9n so that the estimator 58?5‘” of Op5
can be obtained from the following equation based on the bootstrap distribution

P.(6r < 85%" |Xy,...,Xn) = 0.5,

where P.( - |Xi1,...,Xn) is bootstrap distribution of 0,, based on the sample
Xi1,...,Xn and é; is the plug-in estimator of CV? based on the bootstrap sample
Xt .., X7

Now, we propose a simple estimator ég?gt, which is denoted by 6\\72 BM, for the
population CV? under the normal distrib/gtion based on median of the bootstrap
distribution of én. The new estimator CV2gas can be obtained by the following
bootstrap method:

(1) Generates the A" bootstrap sample Sy, = {X7,..., X} from § = {X;,...,
Xn} by a simple random sampling with replacement.

(2) Computes the ordinary estimate 8% = CV?* based on the h®* bootstrap
sample S, = {X7{,..., X }.

(3) Repeats the steps (1) and (2) for a total of B times, which gives B values
of 6** h =1,...,B. Then, the median of g*h provides the final estimate

for CV2, denoted by CV2gar.
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Note that the proposed estimator 0/\72 BM is based on the asymptotic ex-
pansion of difference between the median of sampling distribution of 6,, and the
parameter CV? as given in (3.3). The idea used here is not a usual bias correc-
tion method which is based on the the asymptotic expansion of E(CV?). Hence,
even though we may expect the proposed estimi‘gr may perform better than the
naive estimator, the empirical performance of CV? gy, should be investigated by
Monte-Carlo simulation.

A small simul/agon study is conducted to compare peggrmance of the pro-
posed estimator CV2 gy, with the conventional estimator CV2. The sample sizes
n =25, 50, 75 and 100 are considered under the normal distribution with £/o =
0.30, 0.40, 0.50 and 0.75, which implies that the values of parameter are CV? =
11.11, 6.25, 4.00 and 1.78. The bias and mean squared error (MSE) of two es-
timators are obtained by M = 10,000 Monte Carlo simulation and B = 5,000
bootstrap sample

= _ Zma OV2Bu(m)

M 2
i —69 and MSE= Lm=1(CV ABIM(m) — 0)2.

Table 3.1 shows results of simulation study If the value of CV? is less than
1.5, the bias and MSE of CV2 By and CV2 are almost identical so that they
are omitted. As the va/hie of population CV? becomes large, performance of
conventional estimator CV? is getting worse in sense th/it bias and MSE increase
very rapidly. If sample size increases, performance of CV? is getting better, but if
CV? is larger than 10.0, increasing /simple size does not improve bias and MSE.
Regarding the proposed estimator CV2 )y, there is noticeable huge improvement
both in bias and MSE over the phg—\in estimator, especially when value of CV? is
very large. Note that the bias of CV?%pgyy is still positive even though the leading
term in the asymptotic expansion of fp5 — @ in (3.3) is negative. The reason
is that the asymptotic expansion of fy5 — 8 is not same as that of E(C/\VQ) -0
which is assessed by simulation study here. Also MSE of 6\72 BM Shows some
fluctuation when CV? is very large.

In conclusion, based on the SiIBI_l\la,tiOIl study, the proposed estimator is better
than the conventional estimator CV? when the population CV? is large and also
two estimators show almost identical performa/nge when the population CV? be-
comes small. Hence, it is recommended to use CV? gy if a underlying distribution
is assumed to be the normal distribution.
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TABLE 3.1 Bias and meen squared error (MSE) of CV* and 6‘723”1 under the
normal distribution

cv? CVipm

Ccv?: ¢fo n Bias MSE Bias MSE
11.11  0.30 | 25 | 4.73x10° 7.02x10'2 | 6.18 295.20
50 | 1.41x10%* 3.12x10° | 9.36 678.90
75 | 5.94x107 7.19x10° | 8.30 729.44
100 | 4.73x10° 2.46x10° | 7.29 631.61
6.25 040 | 25 { 545x10° 2.28x10° | 4.55 175.86
50 | 8.29x10%> 2.65x10° | 441 230.06
75 5.54 1.66x10* | 2.63 125.32
100 1.68 544x10! | 1.56  48.13
4.00 050 | 25 | 6.09x10° 8.33x10° | 2.88  87.22
50 6.24 7.63x10* | 1.41  43.99
75 0.94 2.28x10' | 0.83  16.90

100 0.62 8.27 0.55 7.83

1.77 0.75 25 0.74 9.15 0.45 6.34
50 0.23 1.18 0.17 1.11

75 0.15 0.60 0.11 0.57

100 0.11 0.40 0.08 0.38

4. PrROOF OF PROPOSITION 2.1

For notational convenience, the superscript of the vector indicates the corre-
sponding component of vector, i.e. x() = z(? is {* component of the p-variate
vector x’ such that

x = (x(l),w(2), O P,

Suppose Xi,...,X, are independent sample from a given distribution with
a population mean ¢ and variance ¢2. Since the distribution of standardized

quantity S, = n/2(6 — 6) can be written as

R 2/n— X2 o2
P{n'?(h-0) <z} =P {”1/2 (ZLQT‘— - %) = x}
2 2, ¢2
_ P{n1/2 (Zf;/n o 22‘5 ) Sﬂf},
X
now we redefine the parameter of interest as 0 = (02 + £2)/¢2 and let its plug-

in estimator be § = 3 X2/ (nfz). Also, we define the real-valued function f
on R? such that f(w) = f(w®,w®) = w®/(wM)? and let W = (X, X?),
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= (X Xi/n, 2. X}/n) and p = E(W) = (€0 +¢€?). Then, § = f(p) and
0= f (W). Also put Z = n!/2(W — p) and now by Taylor expansion we have
the following expansion of S, = n'/2(§ — 6)

n'/2(4 — 9) Zfz(z)+ 1721 sz NAOYA )N L(n71),
i=1 j=1
where fii,..i, = (07/0wow(2) . .. Juwlin)) f (W) |wep.
Put wiiy.i, = B{(W — p)®...(W — p)#)} and define the p* central
moment of X as m, = E(X — £)P and the standardized p** central moment of X
as v, = E(X — £)P/oP. Then u; = 0 for each i,

E(ZDZ9) = p,
E(Z(i)Z(j)Z(k)) = n—l/2uijk’
E(ZOZzD0Z®20Y = pijpum + paepsi + psse + O(n™Y).

Then,
122
) = n_1/2§ ;; fijuij +O(nh),
2 2
=D > fifim +0(n7Y),
i=1 j=1
T
E(S?) = n‘l/z{ SN FifiFrmign

fifj Fra(pag e + parpin + Hu#jk)} +0(n™h).

The asymptotic expansions of the three cumulants of S, are

kin = E(Sy) = n_1/2A1 + O(n_l),
Kon = E(S?l) — {E(S’n)}2 =724 O(n”l),
K3n = E(S3) — 3E(S2)E(S,) + 2{E(S,)} = n Y243 + O(n™Y),

where

2 2
7 :ZZ ifitig,
1=1 :
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L 22
A = 522 ijMig,
21_ 2 2 2 2 2 2
A =Y 3 S fififemigr +33 0 0 > fifi Frapakiss-
i=1 j=1 k=1 i=1 j=1 k=1 =1

Hence, after some calculations, we have

p11 =me = 02,

pi2 = m3 + 2£0°,

oo = my + 4émg + 4520 — cr4

Hi11 = msg,

a1z = ma + 26mz — o,

pa22 = ms + 4Emy + (46% — 20%)m3 — 460,

p22z = Mg + 6Ems + (1262 — 30%)my + 8¢3m3 — 12620 + 205,

and fro =0, fi = (=2)(0? +&)¢E73, fo=¢2 1 =6(c? + €)™Y, fra=fa =
(—2)¢73. Therefore, after some tedious algebraic calculations, we can obtain the
asymptotic variance 72 of S,, as well as A; and As:

2 2
2= "N fufjg = 46° + (ya — 1)6% — 4436°/%,

i=1 j=1

2 2
1
Ar =5 ) fijpig = 367 = 27362 0,

i=1 j=1
2 2 2
Ay = Z Z Z foJkaz]k +3 Z Z Z Z fz.fg.fkl/flzkﬂjl
i=1 j=1k=1 i=1 j=1 k=1 =1
= 760° — 6750772 + 714(126* — 3603) — ~3(80%/% — 1207/% + 126%/2) — 126* + 263
+3{8v40" — dyyy307/% + 73 (146%/% — 260%) — 3(400%% — 1207/%)
+2460° — 166}
= 760° — 67507/ + 74(366* — 36°) — 12747307/ + ~2(426%/2 — 66°)
—3(1280%/2 — 4897/2 — 120%/2) + 726° — 606" + 26°.

The regularity conditions for Edgeworth expansion are (i) existence of the
finite moment such that E(|X|?) < oo, (ii) the differentiability of f, and (iii) the
Cramer’s condition which guarantees the distribution of X has a non-degenerate,
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absolutely continuous component. Under these regularity conditions, by us-
ing arguments in Hall (1992), we have one-term Edgeworth expansion of S, =
n'/2(§ — ) such that

P{n'2(6 - 6)/7 <z} = B(z) + n~pi(2)$(z) + O(n "),

where
pi(z) = — {4177 4+ L Ar (@t - 1)}
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