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Abstract

Basu et al. (1998) proposed a new density-based estimator, called the 
minimum density power divergence estimator (MDPDE), which avoid the 
use of nonparametric density estimation and associated complication such 
as bandwidth selection. Woodward et al. (1995) examined the minimum 
Hellinger distance estimator (MHDE), proposed by Beran (1977), in the 
case of estimation of the mixture proportion in the mixture of two 
normals. In this article, we introduce  the MDPDE for a mixture 
proportion, and show that both the MDPDE and the MHDE have the 
same asymptotic distribution at a model. Simulation study identifies some 
cases where the MHDE is consistently better than the MDPDE in terms 
of bias.
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1. Introduction

Robustness procedures typically obtain robustness at the expense of not being 

optimal at the true model. However, Beran (1977) has suggested the use of the 

MHDE which has certain robustness properties and is asymptotically efficient at 

the true model. The theories about MHDE have been studied by many researchers 

like Tamura and Boos (1986) (discussed the estimation of location and covariance 

in multivariate data), Eslinger and Woodward (1991) (discussed the estimation of 

the parameters of the normal distribution with unknown location and scale). 

Woodward et al. (1995) discussed MHD estimation in the case of estimating the 
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mixture proportion of the mixture of two normals, and showed that the MHDE 

were robust and obtained full efficiency at the true model. 

Suppose X i,…,X n
 being i.i.d.  with a distribution G with corresponding 

density g and consider f θ(x)=(1-θ) f 1(x)+θf 2(x), where f 1  and f 2  are 

distinct, continuous densities on R , and θ∈[0,1] . If ĝ n  is a Hellinger 

consistent density estimator for f θ, then Woodward et al. (1995) provided a very 

important theorem which concluded with the asymptotic statement at the model 

about the estimator θ̂ n  for the mixture proportion θ ; 

n( θ̂ n-θ-B n)→N( 0,I(θ)
- 1
),                  (1.1)

where I(θ)  is the Fisher information matrix and  B n
 is given by

B n=2C
*
n
⌠
⌡ψ θ f θ( g ñ- f θ)   and   C

*
n→1  in probability

with E[ ĝ n ]= g̃ n . and ψ θ=
1
I(θ)

f 1-f 2
f θ

.

The above result actually was built upon the Theorem 4.1 by Tamura and Boos 

(1986) discussing the asymptotic distribution of the estimators for multivariate 

location and covariance. A kernel density estimator is a usual choice for ĝ n  as

ĝ n (x)=
1
n ∑

1
h
k(
x-X i

h )
with a kernel k(⋅)  and a bandwidth h . We have g̃ n→f θ  at the model g= f, 

as h→0, nh→∞ , then B n→0 .   

Applying the MHDE to the real data associates complications such as bandwidth 

selection. There has been no reliable study about how to select bandwidths in this 

case. Meanwhile, Basu et al. (1998) proposed a class of ' density power 

divergences' indexed by a single parameter, α , which controls the trade-off 

between robustness and efficiency estimation. A good news is that in the process 

of estimation a density estimator is not required , that is, there is no need to 

select a bandwidth. 

Consider a parametric family of models {F θ}, indexed by the unknown 

finite-dimensional parameter θ  in an open connected subset Ω  of a  suitable 

Euclidean space, possessing densities { f θ}  with respect to Lebesque measure. Let 

G  be the distribution underlying the data, having density g  with respect to the 
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same measure. Basu et al. (1998) define the density power divergence between g  

and f θ  to be

d α(g, f θ)=
⌠
⌡{ f 1+ αθ -(1+ 1

α )gf
α
θ+

1
α
g 1+ α}dz (α> 0),

d 0(g, f θ)= lim
α→0
d α(g, f θ)=

⌠
⌡g log (g/f θ )dz.

We shall frequently use the shorthand notation d α',d α'',… for the derivatives 

of d α  with respect to θ . Note that d 0(g, f θ)  is the Kullback-Leiber divergence. 

The resulting sample minimum density power divergence estimators are those 

values θ̂ α  generated by minimizing  

⌠
⌡f

1+ α
θ dz-(1+

1
α
)n -1 ∑

n

i=1
f αθ(X i )

with respect to θ , when α > 0 , and the negative loglikelihood  

-n -1 ∑
n

i=1
logf θ(X i )  when α= 0.  It can be checked easily that the estimating 

equations have the form 

n
-1
∑
n

i=1
f
α
θ(X i )u i(X i )-

⌠
⌡ f

1+α
θ u θdz,

where u θ(z)=∂ log f θ(z)/∂θ  is the maximum likelihood score function. Note 

that this estimating equation is unbiased when g= f θ.

In this article we consider the MDPDE for a mixture proportion and we show 

that both the MDPDE and the MHDE have the same asymptotic distribution at a 

model.  However, simulation study identifies some cases where the MHDE is 

better than the MDPDE in terms of bias. 

2. Asymptotic properties of the MDPDE for the mixture 

proportion

Consider the estimation of the proportions θ 1,θ 2,…,θ s  in the mixture density 

f(x)= θ 1f 1(x)+θ 2f 2(x)+…+θ sf s(x).

Definition 1: Let X i,…,X n
 be i.i.d.  with a distribution G with 
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corresponding density g, that depends on θ= (θ 1,…,θ s), the minimum density 

power divergence estimator for the mixture proportion θ̂, generated by the 

quantity minimising

d α(f θ )=
⌠
⌡f

1+ α
θ dz-(1+

1
α
)n -1 ∑

n

i=1
f αθ(X i )              (1.2)

with respect to θ  for a given α∈(0,1].

Theorem 1: Let X i,…,X n
 be i.i.d.  with a distribution that depends on 

θ= (θ 1,…,θ s). Under certain regularity conditions, given Basu et al. (1997), 

there exists θ̂  such that, as n→∞,  θ̂ n  is consistent for θ, and 

n 1/2( θ̂ n-θ)  is asymptotically multivariate normal with (vector) mean zero and 

covariance matrix J
- 1
K J

- 1
, where J  and K  are given by

   J=⌠⌡u θ(z)u
T
θ (z)f

1+ α
θ dz+⌠⌡i θ(z)-αu θ(z)u

T
θ (z) g(z)- f θ(z) f

α
θ(z)dz,

   K=⌠⌡u θ(z)u
T
θ (z)f

2α
θ (z)g(z)dz- ξξ

T
 with ξ=⌠⌡u θ(z)f

α θ
(z)g(z)dz,  

where u t(z)=∂ log f t(z)/∂t.

Proof:  For estimator θ̂ n  and the true value θ 0 , by Taylor series expansion 

of d α(f θ )  in (1.2), we have

n( θ̂ n-θ 0)=
(1/ n)d α'(f θ)

-(1/n)d α ''(f θ)-(1/2n)( θ̂ n-θ)d α '''(f θ *n)
| θ = θ 0,

where θ *nlies between θ 0  and θ̂ n . Consider first the numerator, and then  by 

the CLT 

1
1+α

d' α(f θ ) =
⌠
⌡f

α
θ(z)f θ '(z)dz-n

-1
∑
n

i=1
f
α- 1
θ (z)f θ '(z)

= ⌠
⌡f

1+ α
θ (z)u θ (z)-n

-1
∑
n

i=1
f αθ(z)u θ (z)

→ N(0, K).

In the denominator the consistency of the estimator, assumption of boundness of 

d''' α(f θ * )  and law of large numbers  give -(1/n)d'' α(f θ )→ J. The constant 

(1+α)  will be cancelled off. Proof is rather straight forward if we follow closely 

the proof of Theorem 6.4.1 of Lehmann (1983) (which is for the maximum 
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likelihood estimator) with appropriate modifications to cope with density power 

divergence. The formulae look complicated, but let d α(f θ )  play like L(θ)  in the 

proof of Lehmann (1983).                            

Suppose that the true distribution g  belongs to the parametric family { f θ}. 

Then the formular for J, K  and ξ  simplify to 

    J=⌠⌡u θ(z)u
T
θ (z)f

1+ α
θ (z)dz,

    K=⌠⌡u θ(z)u
T
θ (z)f

1+ 2α
θ (z)dz- ξ ξ

T
  with  ξ=⌠⌡u θ(z)f

1+ α
θ (z)dz.

Note that, in the limit α→0 , J  and K  both become equal to the Fisher 

information matrix I(θ)
-1. This asymptotic result at the model is the same as 

the one in (1.1) by Woodward et al. (1995) with f θ=(1-θ) f 1+θ f 2.

3. Finite sample properties

We showed that both the MDPDE and the MHDE have the same asymptotic 

distribution under certain conditions. In order to verify the asymptotic equivalence, 

simulations were carried out with 500 random samples of sizes, 10, 20 and 50, 

generated from 30% and 50% mixtures of two normals, N( 0,1)  and  

N( 1,1), N( 3,1), N( 5,1) , respectively. An Epanechnikov kernel and a 

bandwidth by 'bandwidth.nrd' of S-plus (Venables and Ripley, 1996) are used for 

a density estimator. Basu, et al. (1998) did not provide no universal way of 

selecting an appropriate α  parameter, but recommended α  near 0.25. For 

computational convenience α= 1/3  is used for MDPDE, In the course of  

verifying the above theory we have discovered the case where the MHDE is 

consistently better than the MDPDE in terms of having smaller bias.  The results 

are in Table 1; the numbers in bold indicate the cases where the absolute value 

of the bias of the MHDE is smaller than that of the MDPDE, where n= 10  or 

proportion is 50%. The  variances of both estimators are very close, but there is 

no systematic pattern in sizes like biases. The one thing we can think of at this 

moment is that this phenomenon is related with the closeness of the model f  and 

the true density g , because unbiasedness of both the MHDE and the MDPDE is 

attained under the condition that g= f. In practice the true density g  should be 

estimated. Recall that g  is estimated by an empirical density for the MDPDE and 

by an smoothed (kernel) density estimator for the MHDE. When a kernel density 

estimator is more effective in estimating g  than an empirical density, we expect 

that bias of the MHDE would be smaller than that of the MDPDE. 
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4. Conclusions

We show that the MDPDE and the MHDE have the same asymptotic 

distribution when estimating mixture proportions. The MDPDE performs quite well 

without worrying about choosing a smoothing parameter, however we could 

identify the cases where the size of bias of the MHDE is smaller than that of the 

MDPDE are identified. We need more thorough investigation why it happens, but 

at this moment we conclude that there are cases where smoothing data with a 

kernel function in estimating a mixture proportion is useful in reducing bias.

Table 1. Statistics on the estimates of mixture proportions ; f=(1-θ)f 1+θf 2

f 1=N(0,1), f 2=N(μ,1)

μ= 1 μ= 3 μ= 5

n
 proportion

statistics
30% 50% 30% 50% 30% 50%

M

H

D

E

10
bias -.1011 -.1085 -.0472 -.0543 -.0192 -.0245

var .1361 .0566 .0038 .0029 .0010 .0008

20
bias .0277 -.0095 .0244 .0026 .0171 .0017

var .0330 .0359 .0312 .0027 .0007 .0006

50
bias .0265 .0031 .0164 -.0018 .0061 -.0002

var .0149 .0165 .0012 .0012 .0002 .0002

M

D

P

D

E

10
bias -.2326 -.2513 -.0869 -.0907 -.0379 -.0408

var .0018 .0333 .0022 .0034 .0009 .0010

20
bias .0073 -.0138 .0026 .0050 .0014 .0017

var .0410 .0489 .0037 .0036 .0005 .0007

50
bias .0044 .0055 .0003 -.0031 .0010 -.0003

var .0204 .0209 .0014 .0016 .0001 .0003
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