• Title/Summary/Keyword: bi-univalent function

검색결과 12건 처리시간 0.027초

SHARP COEFFICIENT INEQUALITIES FOR CERTAIN SUBCLASSES OF BI-UNIVALENT BAZILEVIČ FUNCTIONS

  • Patil, Amol Bhausaheb
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.113-123
    • /
    • 2022
  • In the present paper, we introduce the subclasses 𝔅(𝜇), B(𝜇, 𝛾) and UΣ(𝜇, 𝛾) of bi-univalent Bazilevič functions which are defined in the open unit disk 𝔻. Further, we obtain sharp estimates on initial coefficients a2, a3, a4 and also sharp estimate on the Fekete-Szegö functional a3 - ka22 for the functions belong to these subclasses.

APPLICATION OF GEGENBAUER POLYNOMIALS TO CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS OF ORDER ν + iς

  • Omar Alnajar;Ala Amourah;Maslina Darus
    • Korean Journal of Mathematics
    • /
    • 제32권1호
    • /
    • pp.183-193
    • /
    • 2024
  • In this paper, a new class of bi-univalent functions that are described by Gegenbauer polynomials is presented. We obtain the estimates of the Taylor-Maclaurin coefficients |m2| and |m3| for each function in this class of bi-univalent functions. In addition, the Fekete-Szegö problems function new are also studied.

COEFFICIENT ESTIMATES FOR A NEW GENERAL SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS

  • Bulut, Serap
    • Korean Journal of Mathematics
    • /
    • 제29권3호
    • /
    • pp.519-526
    • /
    • 2021
  • In a very recent paper, Yousef et al. [Anal. Math. Phys. 11: 58 (2021)] introduced two new subclasses of analytic and bi-univalent functions and obtained the estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3| for functions belonging to these classes. In this study, we introduce a general subclass 𝔅h,pΣ(λ, μ, 𝛿) of analytic and bi-univalent functions in the unit disk 𝕌, and investigate the coefficient bounds for functions belonging to this general function class. Our results improve the results of the above mentioned paper of Yousef et al.

BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER BASED ON SUBORDINATE CONDITIONS INVOLVING HURWITZ-LERCH ZETA FUNCTION

  • Murugusundaramoorthy, G.;Janani, T.;Cho, Nak Eun
    • East Asian mathematical journal
    • /
    • 제32권1호
    • /
    • pp.47-59
    • /
    • 2016
  • The purpose of the present paper is to introduce and investigate two new subclasses of bi-univalent functions of complex order defined in the open unit disk, which are associated with Hurwitz-Lerch zeta function and satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients ${\mid}a_2{\mid}$ and ${\mid}a_3{\mid}$ for functions in the new subclasses. Several (known or new) consequences of the results are also pointed out.

COEFFICIENT ESTIMATES FOR FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

  • Bulut, Serap
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, we consider a convex univalent function fα,β which maps the open unit disc 𝕌 onto the vertical strip domain Ωα,β = {w ∈ ℂ : α < ℜ < (w) < β} and introduce new subclasses of both close-to-convex and bi-close-to-convex functions with respect to an odd starlike function associated with Ωα,β. Also, we investigate the Fekete-Szegö type coefficient bounds for functions belonging to these classes.

ON A CLASS OF q-BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER RELATED TO SHELL-LIKE CURVES CONNECTED WITH THE FIBONACCI NUMBERS

  • Ahuja, Om P.;Cetinkaya, Asena;Bohra, Nisha
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.319-330
    • /
    • 2020
  • We introduce a new subclass of q-bi-univalent functions of complex order related to shell-like curves connected with the Fibonacci numbers. We obtain the coefficient estimates and Fekete-Szegö inequalities for the functions belonging to this class. Relevant connections with various other known classes have been illustrated.

FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR ANALYTIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH GREGORY COEFFICIENTS

  • Serap Bulut
    • Korean Journal of Mathematics
    • /
    • 제32권2호
    • /
    • pp.285-295
    • /
    • 2024
  • In this work, we consider the function $${\Psi}(z)=\frac{z}{\ln(1+z)}=1+\sum\limits_{n=1}^{\infty}\,G_nz^n$$ whose coefficients Gn are the Gregory coefficients related to Stirling numbers of the first kind and introduce a new subclass ${\mathcal{G}}^{{\lambda},{\mu}}_{\Sigma}(\Psi)$ of analytic bi-univalent functions subordinate to the function Ψ. For functions belong to this class, we investigate the estimates for the general Taylor-Maclaurin coefficients by using the Faber polynomial expansions. In certain cases, our estimates improve some of those existing coefficient bounds.

Coefficient Bounds for Bi-spirallike Analytic Functions

  • Soren, Madan Mohan;Mishra, Akshaya Kumar
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.697-709
    • /
    • 2018
  • In the present paper, we introduce and investigate two new subclasses, namely; the class of strongly ${\alpha}$-bi-spirallike functions of order ${\beta}$ and ${\alpha}$-bi-spirallike functions of order ${\rho}$, of the function class ${\Sigma};$ of normalized analytic and bi-univalent functions in the open unit disk $$U=\{z:z{\in}C\;and\;{\mid}z{\mid}<1\}$$. We find estimates on the coefficients ${\mid}a_2{\mid}$, ${\mid}a_3{\mid}$ and ${\mid}a_4{\mid}$ for functions in these two subclasses.