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FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR

ANALYTIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH

GREGORY COEFFICIENTS

Serap Bulut

Abstract. In this work, we consider the function

Ψ(z) =
z

ln (1 + z)
= 1 +

∞∑
n=1

Gnz
n

whose coefficients Gn are the Gregory coefficients related to Stirling numbers of the

first kind and introduce a new subclass Gλ,µΣ (Ψ) of analytic bi-univalent functions
subordinate to the function Ψ.

For functions belong to this class, we investigate the estimates for the general
Taylor-Maclaurin coefficients by using the Faber polynomial expansions. In certain
cases, our estimates improve some of those existing coefficient bounds.

1. Introduction

The generating equation of the Gregory coefficients Gn (see [5, 24]) is given by

(1)
z

ln (1 + z)
= 1 +

∞∑
n=1

Gnz
n

(z ∈ U := {z ∈ C : |z| < 1} , G0 = 1, ln 1 = 0) ,

where

Gn =
1

n!

n∑
l=1

S1 (n, l)

l + 1

and S1 (n, l) is Stirling numbers of the first kind given by

S1 (n, l) =


(2n−l)!
(l−1)!

∑n−l
k=0

1
(n+k) (n−l−k)! (n−l+k)!

∑k
r=0

(−1)r rn−l+k

r! (k−r)! , l ∈ [1, n]

1 , n = 0, l = 0
0 , otherwise

,

(see also [6]). In particular, we have:

S1 (1, 1) = 1, S1 (2, 1) = −1, S1 (2, 2) = 1,

S1 (3, 1) = 2, S1 (3, 2) = −3, S1 (3, 3) = 1.

Received Augst 22, 2023. Revised March 3, 2024. Accepted April 1, 2024.
2010 Mathematics Subject Classification: 30C45.
Key words and phrases: Analytic function, bi-univalent function, coefficient estimates, Faber

polynomials, Gregory coefficients.
© The Kangwon-Kyungki Mathematical Society, 2024.
This is an Open Access article distributed under the terms of the Creative commons Attribu-

tion Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits un-
restricted non-commercial use, distribution and reproduction in any medium, provided the original
work is properly cited.



286 Serap Bulut

Thus, initial values of Gn for n ∈ N := {1, 2, 3, . . .} are

(2) G1 =
1

2
, G2 = − 1

12
, G3 =

1

24
, G4 = − 19

720
, G5 =

3

160
.

Let H be the class of analytic functions in the open unit disc U, and consider the
classes P , A and S defined by

P = {p ∈ H : p(0) = 1 and < (p(z)) > 0 (z ∈ U)} ,
A = {f ∈ H : f(0) = f ′(0)− 1 = 0} ,
S = {f ∈ A : f is univalent in U } ,

respectively.
For two functions f, g ∈ H, we say that the function f is subordinate to g in U, and

write
f (z) ≺ g (z) , (z ∈ U) ,

if there exists a Schwarz function

ω ∈ Ω := {ω ∈ H : ω(0) = 0 and |ω (z)| < 1, (z ∈ U)} ,
such that

f (z) = g (ω (z)) , (z ∈ U) .

It is clear that the function f ∈ A can be expressed as

(3) f(z) = z +
∞∑
n=2

anz
n (z ∈ U) .

By Koebe One-Quarter Theorem [12], every function f ∈ S has an inverse f−1,
which is defined by

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r∗; r∗ ≥ 1

4

)
.

For the inverse function g := f−1, we obtain

g (w) := f−1 (w)

= w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · ·

=: w +
∞∑
n=2

Anw
n.(4)

If the functions f and f−1 are univalent in U, then f is called bi-univalent function.
Let Σ denote the class of bi-univalent functions in U given by (3).

The class Σ of analytic bi-univalent functions was first introduced by Lewin [20],
where it was proved that |a2| < 1.51. Brannan and Clunie [7] improved Lewin’s result
to |a2| ≤

√
2 and later Netanyahu [22] proved that max

f∈Σ
|a2| = 4

3
. For more details and

examples of functions belong to the class Σ, see [28] (see also [11,18,27,28,31,32]).
Brannan and Taha [8] and Taha [29] investigated certain subclasses of Σ and found

non-sharp estimates on |a2| and |a3| . Furthermore, Sivasubramanian et al. [26] verified
Brannan and Clunie’s conjecture |a2| ≤

√
2 for some subclasses of Σ. But the bounds

on the general coefficient |an| for n > 3 are not much known. In this study, we use the
Faber polynomial expansions introduced by Faber [13] to determine general coefficient
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bound |an| of analytic bi-univalent functions whose coefficients are related to Gregory
coefficients. Some works investigated the general coefficient bounds |an| using Faber
polynomial expansions can be found in [3, 4, 9, 15,16,19,25,33], (see also [10,14,17]).

2. The Class Gλ,µΣ (Ψ)

Throughout this paper, we assume that λ ≥ 1 and µ ≥ 0. By considering the
function Ψ,

Ψ(z) =
z

ln (1 + z)

given by (1) , we introduce a new subclass of analytic bi-univalent functions as follows.

Definition 2.1. A function f ∈ Σ given by (3) is said to be in the class Gλ,µΣ (Ψ)
if the following conditions are satisfied:

(5) (1− λ)

(
f (z)

z

)µ
+ λf ′ (z)

(
f (z)

z

)µ−1

≺ Ψ(z)

and

(6) (1− λ)

(
g (w)

w

)µ
+ λg′ (w)

(
g (w)

w

)µ−1

≺ Ψ(w)

where z, w ∈ U and g = f−1 is defined by (4) .

Remark 2.2. We obtain the following bi-univalent function classes which consists
of functions f ∈ Σ for the special values of λ and µ.
(i) For µ = 1 :

HλΣ (Ψ) =

{
f ∈ Σ : (1− λ)

f (z)

z
+ λf ′ (z) ≺ Ψ(z) and (1− λ)

f (z)

z
+ λf ′ (z) ≺ Ψ(z)

}
.

(ii) For µ = 1 and λ = 1 :

NΣ (Ψ) = {f ∈ Σ : f ′ (z) ≺ Ψ(z) and g′ (w) ≺ Ψ(w) } .

introduced by Murugusundaramoorthy et al. [21].
(iii) For µ = 0 and λ = 1 :

SΣ (Ψ) =

{
f ∈ Σ :

zf ′ (z)

f (z)
≺ Ψ(z) and

wg′ (w)

g (w)
≺ Ψ(w)

}
.

(iv) For λ = 1 :

BµΣ (Ψ) =

{
f ∈ Σ :

z1−µf ′ (z)

(f (z))1−µ ≺ Ψ(z) and
w1−µg′ (w)

(g (w))1−µ ≺ Ψ(w)

}
.

Remark 2.3. Since the function Ψ is univalent (see [21]), the class Gλ,µΣ (Ψ) is
related to the class N (µ) of non-Bazilević functions defined by Obradović [23] as
follows:

<

(
f ′ (z)

(
z

f(z)

)1+µ
)
> 0 (0 < µ < 1, z ∈ U) .
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3. Coefficient estimates

Using the Faber polynomial expansion of functions f ∈ A of the form (3), the
coefficients of its inverse function g = f−1 can be expressed as, [1]:

(7) g (w) = f−1 (w) = w +
∞∑
n=2

1

n
K−nn−1 (a2, a3, . . .)w

n,

where

K−nn−1 =
(−n)!

(−2n+ 1)! (n− 1)!
an−1

2 +
(−n)!

(2 (−n+ 1))! (n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)! (n− 4)!
an−4

2 a4

+
(−n)!

(2 (−n+ 2))! (n− 5)!
an−5

2

[
a5 + (−n+ 2) a2

3

]
+

(−n)!

(−2n+ 5)! (n− 6)!
an−6

2 [a6 + (−2n+ 5) a3a4] +
∑
j≥7

an−j2 Vj,(8)

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables a2, a3, . . . , an,
[2]. For n = 2, 3, 4, we obtain

(9) K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3

)
, K−4

3 = −4
(
5a3

2 − 5a2a3 + a4

)
,

respectively. In general case, for any p ∈ N, Kp
n is, [1],

(10) Kp
n = pan +

p (p− 1)

2
D2
n +

p!

(p− 3)! 3!
D3
n + · · ·+ p!

(p− n)!n!
Dn
n,

where
Dp
n = Dp

n (a2, a3, . . .) ,

and by [30],

Dm
n (a1, a2, . . . , an) =

∑ m!

i1! . . . in!
ai11 . . . a

in
n

while a1 = 1, and the sum is taken over all non-negative integers i1, . . . , in satisfying{
i1 + i2 + · · ·+ in = m
i1 + 2i2 + · · ·+ nin = n

.

It is clear that
Dn
n (a1, a2, . . . , an) = an1 .

Consequently, for functions f ∈ A of the form (3) , we can write

(11) (1− λ)

(
f (z)

z

)µ
+ λf ′ (z)

(
f (z)

z

)µ−1

= 1 +
∞∑
n=2

Fn−1 (a2, a3, . . . , an) zn−1,

where

F1 = (µ+ λ) a2,

F2 = (µ+ 2λ)

[
µ− 1

2
a2

2 + a3

]
,

F3 = (µ+ 3λ)

[
(µ− 1) (µ− 2)

3!
a3

2 + (µ− 1) a2a3 + a4

]
.
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In general,

Fn−1 (a2, a3, . . . , an) = [µ+ (n− 1)λ]× [(µ− 1)!]

×
∑ ai12 a

i2
3 . . . a

in−1
n

i1!i2! . . . in! [µ− (i1 + i2 + · · ·+ in−1)]!
(12)

is a Faber polynomial of degree (n− 1) .

Lemma 3.1. [12] Let p(z) = 1 + c1z + c2z
2 + · · · ∈ P , then |ck| ≤ 2 for k ∈ N.

Lemma 3.2. [34] Let k, l ∈ R and z1, z2 ∈ C. If |z1| < R and |z2| < R, then

|(k + l) z1 + (k − l) z2| ≤

 2R |k| , |k| ≥ |l|

2R |l| |k| ≤ |l|
.

Theorem 3.3. Let the function f ∈ Gλ,µΣ (Ψ) be given by (3) . If ak = 0 (2 ≤ k ≤ n− 1) ,
then

|an| ≤
1

2 [µ+ (n− 1)λ]
(n ≥ 3) .

Proof. Let f ∈ Gλ,µΣ (Ψ) be of the form (3) . Then we have the expansion (11). For
the inverse map g = f−1 given by (4) , we get

(13) (1− λ)

(
g (w)

w

)µ
+ λg′ (w)

(
g (w)

w

)µ−1

= 1 +
∞∑
n=2

Fn−1 (A2, A3, . . . , An)wn−1,

with

(14) An =
1

n
K−nn−1 (a2, a3, . . . , an) .

On the other hand, since f ∈ Gλ,µΣ (Ψ), by the subordination principle, there exist
the Schwarz’s function κ (z),

κ ∈ H : κ(0) = 0 and |κ (z)| < 1 (z ∈ U)

such that

(15) (1− λ)

(
f (z)

z

)µ
+ λf ′ (z)

(
f (z)

z

)µ−1

= Ψ(κ(z)) (z ∈ U) .

Since Ψ is univalent in the open unit disk U, by (15) , the function

(16) p(z) :=
1 + κ(z)

1− κ(z)
= 1 + c1z + c2z

2 + c3z
3 + · · ·

belongs to the class P . Solving κ(z) in terms of p(z) in (16) , we obtain

κ(z) =
1

2
c1z +

1

2

(
c2 −

c2
1

2

)
z2 +

1

2

(
c3 − c1c2 +

c3
1

4

)
z3

+
1

2

(
c4 − c1c3 +

3

4
c2

1c2 −
1

2
c2

2 −
1

8
c4

1

)
z4 + · · · .(17)
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Using (17) in (1) and considering (2) , we find

Ψ(κ(z)) = 1 +
1

4
c1z +

1

4

(
c2 −

7

12
c2

1

)
z2 +

1

4

(
c3 −

7

6
c1c2 +

17

48
c3

1

)
z3

+
1

4

(
c4 −

7

6
c1c3 +

17

16
c2

1c2 −
7

12
c2

2 −
649

2880
c4

1

)
z4 + · · · .(18)

Define

κ(z) :=
∞∑
n=1

ϕnz
n.

Thus, we can write

(19) Ψ(κ(z)) = 1 +
∞∑
n=1

n∑
j=1

GjD
j
n (ϕ1, ϕ2, . . . , ϕn) zn.

Similarly, since g ∈ Gλ,µΣ (Ψ) , there exist the Schwarz’s function τ (w) ,

τ ∈ H : τ(0) = 0 and |τ (w)| < 1 (w ∈ U)

such that

(20) (1− λ)

(
g (w)

w

)µ
+ λg′ (w)

(
g (w)

w

)µ−1

= Ψ(τ(w)) (w ∈ U) .

Since Ψ is univalent in the open unit disk U, by (20) , the function

(21) q(w) :=
1 + τ(w)

1− τ(w)
= 1 + d1w + d2w

2 + d3w
3 + · · ·

belongs to the class P . Solving τ(w) in terms of q(w) in (21) , we obtain

τ(w) =
1

2
d1w +

1

2

(
d2 −

d2
1

2

)
w2 +

1

2

(
d3 − d1d2 +

d3
1

4

)
w3

+
1

2

(
d4 − d1d3 +

3

4
d2

1d2 −
1

2
d2

2 −
1

8
d4

1

)
w4 + · · · .(22)

Using (22) in (1) and considering (2) , we find

Ψ(τ(w)) = 1 +
1

4
d1w +

1

4

(
d2 −

7

12
d2

1

)
w2 +

1

4

(
d3 −

7

6
d1d2 +

17

48
d3

1

)
w3

+
1

4

(
d4 −

7

6
d1d3 +

17

16
d2

1d2 −
7

12
d2

2 −
649

2880
d4

1

)
w4 + · · · .(23)

Define

τ(w) :=
∞∑
n=1

ψnw
n.

Thus, we can write

(24) Ψ(τ(w)) = 1 +
∞∑
n=1

n∑
j=1

GjD
j
n (ψ1, ψ2, . . . , ψn)wn.

Considering (11) and (19) in equality (15), for any n ≥ 2, we get

(25) Fn−1 (a2, a3, . . . , an) =
n−1∑
j=1

GjD
j
n−1 (ϕ1, ϕ2, . . . , ϕn−1) ,
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and similarly, (13) and (24) in equality (20) , we obtain

(26) Fn−1 (A2, A3, . . . , An) =
n−1∑
j=1

GjD
j
n−1 (ψ1, ψ2, . . . , ψn−1) .

By hypothesis, since ak = 0 (2 ≤ k ≤ n− 1) , we have

An = −an,

ϕ1 = · · · = ϕn−2 = 0, ϕn−1 =
1

2
cn−1

and

ψ1 = · · · = ψn−2 = 0, ψn−1 =
1

2
dn−1.

So (25) and (26) imply that

[µ+ (n− 1)λ] an = G1ϕn−1 and − [µ+ (n− 1)λ] an = G1ψn−1,

respectively. Using the fact that G1 = 1
2

and Lemma 3.1, we obtain

|an| =
G1 |ϕn−1|

µ+ (n− 1)λ
=

G1 |ψn−1|
µ+ (n− 1)λ

≤ 1

2 [µ+ (n− 1)λ]
,

which completes the proof of the Theorem 3.3.

Theorem 3.4. Let the function f ∈ Gλ,µΣ (Ψ) be given by (3) . Then

(27) |a2| ≤
√

3

3 (µ+ 2λ) (µ+ 1) + 14 (µ+ λ)2

and

(28) |a3| ≤


1

2(µ+2λ)
, 3 (µ+ 2λ) (1− µ) ≤ 14 (µ+ λ)2

3
3(µ+2λ)(µ+1)+14(µ+λ)2

, 3 (µ+ 2λ) (1− µ) ≥ 14 (µ+ λ)2
.

Proof. If we set n = 2 and n = 3 in (25) and (26) , respectively, we get

(29) (µ+ λ) a2 = G1ϕ1,

(30) (µ+ 2λ)

[
µ− 1

2
a2

2 + a3

]
= G1ϕ2 +G2ϕ

2
1,

(31) − (µ+ λ) a2 = G1ψ1,

(32) (µ+ 2λ)

[
µ+ 3

2
a2

2 − a3

]
= G1ψ2 +G2ψ

2
1,

where

ϕ1 =
1

2
c1, ϕ2 =

1

2

(
c2 −

c2
1

2

)
,

ψ1 =
1

2
d1, ψ2 =

1

2

(
d2 −

d2
1

2

)
.

Note that
ϕ1 = −ψ1 and ϕ2

1 + ψ2
1 = 8 (µ+ λ)2 a2

2



292 Serap Bulut

or equivalently

(33) c1 = −d1 and c2
1 + d2

1 = 32 (µ+ λ)2 a2
2.

From (29) and (31) , we find

(34) |a2| =
G1 |ϕ1|
µ+ λ

=
G1 |ψ1|
µ+ λ

≤ 1

2 (µ+ λ)
.

Also from (30) and (32) , we obtain

(µ+ 2λ) (µ+ 1) a2
2 = G1 (ϕ2 + ψ2) +G2

(
ϕ2

1 + ψ2
1

)
or equivalently

(35) (µ+ 2λ) (µ+ 1) a2
2 =

1

4
(c2 + d2)− 7

48

(
c2

1 + d2
1

)
.

Substituting the value of c2
1 +d2

1 from (33) in the right hand side of the above equality,
we deduce that

(36) a2
2 =

3 (c2 + d2)

4
[
3 (µ+ 2λ) (µ+ 1) + 14 (µ+ λ)2] .

Using the Lemma 3.1, we get

(37) |a2| ≤
√

3

3 (µ+ 2λ) (µ+ 1) + 14 (µ+ λ)2 ,

and combining this with the inequality (34) , we obtain the desired estimate on the
coefficient |a2| as asserted in (27) .

Next, in order to find the bound on the coefficient |a3| , we subtract (32) from (30) .
We thus get

(µ+ 2λ)
(
−2a2

2 + 2a3

)
=
G1

2
(c2 − d2)

or

(38) a3 = a2
2 +

c2 − d2

8 (µ+ 2λ)
.

Upon substituting the value of a2
2 from (36) into (38) , it follows that

a3 =

(
Λ (λ, µ) +

1

8 (µ+ 2λ)

)
c2 +

(
Λ (λ, µ)− 1

8 (µ+ 2λ)

)
d2,

where

Λ (λ, µ) =
3

4
[
3 (µ+ 2λ) (µ+ 1) + 14 (µ+ λ)2] .

By Lemma 3.2, we get the desired estimate on the coefficient |a3| as asserted in
(28) .

By setting λ = 1 and µ = 1 in Theorem 3.4, we obtain the following consequence.

Corollary 3.5. Let the function f ∈ NΣ (Ψ) be given by (3) . Then

|a2| ≤
√

3

74
and |a3| ≤

1

6
.

Remark 3.6. Note that the above corollary gives an improvement the result on
|a3| given in [21, Theorem 1].
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Theorem 3.7. Let the function f ∈ Gλ,µΣ (Ψ) be given by (3) . Then for any δ ∈ R,
we have

∣∣a3 − δa2
2

∣∣ ≤


1
2(µ+2λ)

, δ ∈ [ρ, η]

3|1−δ|
3(µ+2λ)(µ+1)+14(µ+λ)2

, δ ∈ (−∞, ρ] ∪ [η,∞)
,

where

ρ =
3 (µ+ 2λ) (1− µ)− 14 (µ+ λ)2

6 (µ+ 2λ)

and

η =
3 (µ+ 2λ) (µ+ 3) + 14 (µ+ λ)2

6 (µ+ 2λ)
.

Proof. For the function f ∈ Gλ,µΣ (Ψ) of the form (3) , from (36) and (38) we have

a3 − δa2
2 =

(
h (δ) +

1

8 (µ+ 2λ)

)
c2 +

(
h (δ)− 1

8 (µ+ 2λ)

)
d2,

where

h (δ) =
3 (1− δ)

4
[
3 (µ+ 2λ) (µ+ 1) + 14 (µ+ λ)2] .

Then by Lemma 3.1 and Lemma 3.2, we conclude that

∣∣a3 − δa2
2

∣∣ ≤


1
2(µ+2λ)

, |h (δ)| ≤ 1
8(µ+2λ)

4 |h (δ)| , |h (δ)| ≥ 1
8(µ+2λ)

.

By setting λ = 1 and µ = 1 in Theorem 3.7, we obtain the following consequence.

Corollary 3.8. [21] Let the function f ∈ NΣ (Ψ) be given by (3) . Then for any
δ ∈ R, we have

∣∣a3 − δa2
2

∣∣ ≤


1
6

, δ ∈
[
−28

9
, 46

9

]
3|1−δ|

74
, δ ∈

(
−∞,−428

9

]
∪
[

46
9
,∞
) .
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