KYUNGPOOK Math. J. 59(2019), 215-224
https://doi.org/10.5666/KMJ.2019.59.2.215
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Coefficient Bounds for Several Subclasses of Analytic and Biunivalent Functions

Samira Rahrovi* and Hossein Piri
Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran
e-mail: s.rahrovi@bonabu.ac.ir and hossein_piri1979@yahoo.com
Janusz Sokó́
Faculty of Mathematics and Natural Sciences, University of Rzeszów, Prof. Pigonia street 1, 35-310 Rzeszów, Poland
e-mail: jsokol@ur.edu.pl

Abstract. In the present paper, some generalizations of analytic functions have been considered and the bounds of the coefficients of these classes of bi-univalent functions have been investigated.

1. Introduction and Preliminaries

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$. Also let S denote the subclass of \mathcal{A} consisting of univalent functions in U. A function f in S is said to be starlike of order $\alpha(0 \leq \alpha<1)$ in U if $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\alpha$. We denote by $S^{*}(\alpha)$, the class of all such functions. A function f in S is said to be convex of order $\alpha(0 \leq \alpha<1)$ in U if $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\alpha$. Let $K(\alpha)$ denote the class of all those functions which are convex of order α in U. Mocanu [10] studied linear combinations of the representations of convex and starlike functions and defined the

* Corresponding Author.

Received December 17, 2016; revised March 20, 2019; accepted April 23, 2019.
2010 Mathematics Subject Classification: 30C45.
Key words and phrases: bi-univalent function, starlike function of order α, strongly starlike functions, strongly convex functions of order α, subordination.
class of α-convex functions. In [9], it was shown that if

$$
\operatorname{Re}\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>0, \quad z \in U
$$

then f is in the class of starlike functions $S^{*}(0)$ for α real and is in the class of convex functions $K(0)$ for $\alpha \geq 1$.

A function $f(z) \in S$ is said to be in the class of strongly starlike functions of order α, denoted by $S_{s}^{*}(\alpha), 0 \leq \alpha<1$, if it satisfies the following inequality

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right| \leq \frac{\alpha \pi}{2}, \quad z \in U
$$

and is said to be in the class of strongly convex functions of order $\alpha, 0 \leq \alpha<1$, denoted by $K_{c}(\alpha)$, if it satisfies the following inequality

$$
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right| \leq \frac{\alpha \pi}{2}, \quad z \in U
$$

For two functions f and g, analytic in U, we say that the function f is subordinate to g, and write $f(z) \prec g(z)$, if there exists an analytic function $\varphi(z)$ defined in U with $\varphi(0)=0$ and $|\varphi(z)|<1$ such that $f(z)=g(\varphi(z))$.

For each $f \in S$, the Koebe one-quarter theorem [5] ensures the image of U under f contains a disk of radius $1 / 4$. Thus every univalent function $f \in S$ has an inverse f^{-1} satisfying

$$
f^{-1}(f(z))=z, \quad z \in U
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad|w|<r_{0}(f), \quad r_{0}(f) \geq \frac{1}{4}
$$

A function $f(z) \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. If f given by (1.1) is bi-univalent, then a simple computation shows that $g=f^{-1}$ has the expansion

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.2}
\end{equation*}
$$

Let Σ denote the class of all bi-univalent functions defined in the unit disk U.
Lewin [8] considered the class of bi-univalent functions Σ and obtained the following bound for the second coefficient in the Tylor-Maclaurin expansion as follows

$$
\left|a_{2}\right|<1.51
$$

for function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \Sigma$. After that, Brannan and Clunie [3] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$ for $f \in \Sigma$. Netanyahu [11] showed that max $\left|a_{2}\right|=4 / 3$ if $f \in \Sigma$. Brannan and Taha [4] studied some subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly starlike,
starlike and convex functions. They introduced the class of bi-starlike functions and bi-convex functions and investigated estimates on the two initial coefficients. Until now, the coefficient estimate problem for each of the following Taylor-Maclaurin coefficients

$$
\left|a_{n}\right|, \quad n \in \mathbb{N} \backslash\{1,2\}, \mathbb{N}=\{1,2, \ldots\}
$$

is presumably still an open problem. The bi-univalent functions was actually revived in the recent years by the pioneering work by Srivastava et al. [15]. In [15], two new subclasses of the function class Σ has been introduced and the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ has been considered. After that, many authors investigated bounds for various subclasses of bi-univalent functions $[1,6,12,15,16]$.

We notice that the class Σ is not empty. For example, the following functions are members of Σ :

$$
z, \quad \frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \frac{1+z}{1-z}
$$

However, the Koebe function is not a member of Σ.
In the next section, motivated essentially by the recent work of Srivastava et al. [15], Frasin and Aouf [6], Xu et al. [16] and other authors, we investigte interesting subclasses of analytic and bi-univalent functions in the open unit dick U. So we estimate the first two Tylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for these classes.

2. Coefficient Estimates

In the sequel, it is assumed that φ is an analytic function with positive real part in the unit disk U, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$ and $\varphi(U)$ is symmetric with respect to the real axis. Assume also that

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z+B_{3} z+\ldots, \quad B_{1}>0 \tag{2.1}
\end{equation*}
$$

Suppose that $u(z)$ and $v(z)$ are analytic in the unit disk U with $u(0)=v(0)=0$, $|u(z)|<1,|v(z)|<1$ and suppose that

$$
\begin{equation*}
u(z)=b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n}, \quad v(z)=c_{1} z+\sum_{n=2}^{\infty} c_{n} z^{n}, \quad|z|<1 \tag{2.2}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
\left|b_{1}\right| \leq 1, \quad\left|b_{2}\right| \leq 1-\left|b_{1}\right|^{2}, \quad\left|c_{1}\right| \leq 1, \quad\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2} \tag{2.3}
\end{equation*}
$$

By a simple calculation, we have

$$
\begin{gather*}
\varphi(u(z))=1+B_{1} b_{1} z+\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) z^{2}+\ldots \tag{2.4}\\
\varphi(v(w))=1+B_{1} c_{1} w+\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) w^{2}+\ldots \tag{2.5}
\end{gather*}
$$

Definition 2.1. A function f given by (1.1) is said to be in the class $H_{\Sigma}(\alpha, \beta, \varphi)$, $0 \leq \alpha \leq 1, \beta \geq 0$, if $f \in \Sigma$ and satisfies the following conditions $f \in \mathcal{A}$ is said to be in the class

$$
(1-\beta)\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]+\beta \frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \prec \varphi(z)
$$

and

$$
(1-\beta)\left[(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]+\beta \frac{w g^{\prime}(w)+\alpha w^{2} g^{\prime \prime}(w)}{(1-\alpha) g(w)+\alpha w g^{\prime}(w)} \prec \varphi(w),
$$

where $g(w)=f^{-1}(w)$ is given by (1.2).
For special choices for the number α, β and function φ, we can obtain several important classes of analytic functions. For example, $H_{\Sigma}\left(0,0, \frac{1+(1-2 \alpha) z}{1-z}\right)$ is the class $S^{*}(\alpha), H_{\Sigma}\left(1,0, \frac{1+(1-2 \alpha) z}{1-z}\right)$ is the class $K(\alpha), H_{\Sigma}\left(0,0,\left(\frac{1+z}{1-z}\right)^{\alpha}\right)$ is the class $S_{s}^{*}(\alpha)$ and $H_{\Sigma}\left(1,0,\left(\frac{1+z}{1-z}\right)^{\alpha}\right)$ is the class $K_{c}(\alpha)$. These classes of analytic functions were well investigated by many authors $[2,7,9,10,13,14]$.

For proving our results we used the subordination concept which have been used by many authors (for example see [1]).

Theorem 2.2. If $f \in H_{\Sigma}(\alpha, \beta, \varphi)$ is in \mathcal{A}, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right|+(\alpha+1)^{2} B_{1}}}, \tag{2.6}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{2(1+2 \alpha)}, & B_{1} \leq \frac{(1+\alpha)^{2}}{2(1+2 \alpha)}, \tag{2.7}\\ \frac{\left|(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right|+2(1+2 \alpha) B_{1}^{3}}{2(1+2 \alpha)\left[(\alpha+1)^{2} B_{1}+\left|(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right|\right]}, & B_{1} \geq \frac{(1+\alpha)^{2}}{2(1+2 \alpha)} .\end{cases}
$$

Proof. Let $f \in H_{\Sigma}(\alpha, \beta, \varphi)$ and $g=f^{-1}$. Then there exist two functions u and v; analytic in U; with $|u(z)|<1,|v(w)|<1, u(0)=v(0)=0, z, w \in U$, given by (2.2), such that

$$
\begin{equation*}
(1-\beta)\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]+\beta \frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)}=\varphi(u(z)), \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta)\left[(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]+\beta \frac{w g^{\prime}(w)+\alpha w^{2} g^{\prime \prime}(w)}{(1-\alpha) g(w)+\alpha w g^{\prime}(w)}=\varphi(v(w)) . \tag{2.9}
\end{equation*}
$$

Since

$$
\begin{aligned}
& (1-\beta)\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]+\beta \frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \\
& =1+(1+\alpha) a_{2} z+\left[2(1+2 \alpha) a_{3}-\left(1+3 \alpha-\alpha \beta+\alpha^{2} \beta\right) a_{2}^{2}\right] z^{2}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& (1-\beta)\left[(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]+\beta \frac{w g^{\prime}(w)+\alpha w^{2} g^{\prime \prime}(w)}{(1-\alpha) g(w)+\alpha w g^{\prime}(w)} \\
& =1-(1+\alpha) a_{2} w-\left[\left(1+3 \alpha-\alpha \beta+\alpha^{2} \beta\right) a_{2}^{2}-2(1+2 \alpha)\left(2 a_{2}^{2}-a_{3}\right)\right] w^{2}+\ldots,
\end{aligned}
$$

it follows from (2.4), (2.5), (2.8) and (2.9) that

$$
\begin{gather*}
(\alpha+1) a_{2}=B_{1} b_{1}, \tag{2.10}\\
2(1+2 \alpha) a_{3}-\left(1+3 \alpha-\alpha \beta+\alpha^{2} \beta\right) a_{2}^{2}=B_{1} b_{2}+B_{2} b_{1}^{2}, \tag{2.11}\\
-(\alpha+1) a_{2}=B_{1} c_{1}, \tag{2.12}\\
2(1+2 \alpha)\left(2 a_{2}^{2}-a_{3}\right)-\left(1+3 \alpha-\alpha \beta+\alpha^{2} \beta\right) a_{2}^{2}=B_{1} c_{2}+B_{2} c_{1}^{2} . \tag{2.13}
\end{gather*}
$$

From (2.10) and (2.12) we get

$$
\begin{equation*}
c_{1}=-b_{1}, \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\alpha+1)^{2} a_{2}^{2}=B_{1}^{2}\left(b_{1}^{2}+c_{1}^{2}\right) . \tag{2.15}
\end{equation*}
$$

By adding the relation (2.11) with the relation (2.13) and use (2.15) we can get

$$
2\left[(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right] a_{2}^{2}=B_{1}^{3}\left(b_{2}+c_{2}\right)
$$

Now, in view of (2.3), (2.10) and (2.14) we have

$$
\begin{aligned}
2\left|(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right|\left|a_{2}\right|^{2} & \leq B_{1}^{3}\left(\left|b_{2}\right|+\left|c_{2}\right|\right) \\
& \leq B_{1}^{3}\left(\left(1-\left|b_{1}\right|^{2}\right)+\left(1-\left|c_{1}\right|^{2}\right)\right) \\
& \leq 2 B_{1}^{3}\left(1-\left|b_{1}\right|^{2}\right) \\
& =2 B_{1}^{3}-2(\alpha+1)^{2} B_{1}\left|a_{2}\right|^{2} .
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right|+(\alpha+1)^{2} B_{1}}} \tag{2.16}
\end{equation*}
$$

Next, from (2.11) and (2.13), we have

$$
4(1+2 \alpha) a_{3}=B_{1}\left(b_{2}-c_{2}\right)+4(1+2 \alpha) a_{2}^{2}
$$

Then in view of (2.3) and (2.14), we have

$$
\begin{aligned}
4(1+2 \alpha)\left|a_{3}\right| & \leq 4(1+2 \alpha)\left|a_{2}\right|^{2}+B_{1}\left(\left|b_{2}\right|+\left|c_{2}\right|\right) \\
& \leq 4(1+2 \alpha)\left|a_{2}\right|^{2}+2 B_{1}\left(1-\left|b_{1}\right|^{2}\right)
\end{aligned}
$$

It follows from (2.10) that

$$
2 B_{1}(1+2 \alpha)\left|a_{3}\right| \leq\left[2 B_{1}(1+2 \lambda)-(1+\alpha)^{2}\right]\left|a_{2}\right|^{2}+B_{1}^{2}
$$

Now from (2.16) we have

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{2(1+2 \alpha)}, & B_{1} \leq \frac{(1+\alpha)^{2}}{2(1+2 \alpha)} \\ \frac{\left|(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right|+2(1+2 \alpha) B_{1}^{3}}{2(1+2 \alpha)\left[(\alpha+1)^{2} B_{1}+\left|(1+\alpha)\left(B_{1}^{2}-(1+\alpha) B_{2}\right)+B_{1}^{2} \alpha \beta(1-\alpha)\right|\right]}, & B_{1} \geq \frac{(1+\alpha)^{2}}{2(1+2 \alpha)}\end{cases}
$$

This completes the proof.
Remark 2.3. Let

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\gamma}=1+2 \gamma z+2 \gamma^{2} z^{2}+\ldots, \quad 0<\gamma \leq 1
$$

then inequalities (2.6) and (2.7) become

$$
\left|a_{2}\right| \leq \frac{2 \sqrt{\gamma}}{\sqrt{(1-\alpha)(1+\alpha+2 \alpha \beta)}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{\gamma}{1+2 \alpha}, & \gamma \leq \frac{(1+\alpha)^{2}}{4(1+2 \alpha)} \\ \frac{(1-\alpha)(1+\alpha+2 \alpha \beta)+16 \gamma(1+2 \alpha)}{\gamma(1+2 \alpha)(1-\alpha)(1+\alpha+2 \alpha \beta)}, & \gamma \geq \frac{(1+\alpha)^{2}}{4(1+2 \alpha)}\end{cases}
$$

Definition 2.4. A function f given by (1.1) is said to be in the class $C_{\Sigma}(\lambda, \varphi)$, $0 \leq \lambda<1$, if $f \in \Sigma$ and satisfies the following conditions

$$
\frac{\lambda z^{3} f^{\prime \prime \prime}(z)+(2 \lambda+1) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)} \prec \varphi(z)
$$

and

$$
\frac{\lambda w^{3} g^{\prime \prime \prime}(w)+(2 \lambda+1) w^{2} g^{\prime \prime}(w)+w g^{\prime}(z)}{\lambda w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)} \prec \varphi(w),
$$

where $g(w)=f^{-1}(w)$ is given by (1.2).
Theorem 2.5. If $f \in C_{\Sigma}(\lambda, \varphi)$ is in \mathcal{A}, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|2\left(2 \lambda+1-2 \lambda^{2}\right) B_{1}^{2}-4(\lambda+1)^{2} B_{2}\right|+4(\lambda+1)^{2} B_{1}}} \tag{2.17}
\end{equation*}
$$

and
(2.18)

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{6(1+2 \lambda)}, & B_{1} \leq \frac{2(1+\lambda)^{2}}{3(1+2 \lambda)} \\ \frac{\left|\left(2 \lambda+1-2 \lambda^{2}\right) B_{1}^{2}-2(\lambda+1)^{2} B_{2}\right|+3(1+2 \lambda) B_{1}^{3}}{3(1+2 \lambda)\left[\left|2\left(2 \lambda+1-2 \lambda^{2}\right) B_{1}^{2}-4(\lambda+1)^{2} B_{2}\right|+4(\lambda+1)^{2} B_{1}\right]}, & B_{1} \geq \frac{2(1+\lambda)^{2}}{3(1+2 \lambda)}\end{cases}
$$

Proof. Let $f \in C_{\Sigma}(\lambda, \varphi)$ and $g=f^{-1}$. Then there are analytic functions $u, v:$ $U \longrightarrow U$ given by (2.2) such that

$$
\begin{equation*}
\frac{\lambda z^{3} f^{\prime \prime \prime}(z)+(2 \lambda+1) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}=\varphi(u(z)) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda w^{3} g^{\prime \prime \prime}(w)+(2 \lambda+1) w^{2} g^{\prime \prime}(w)+w g^{\prime}(z)}{\lambda w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}=\varphi(v(w)) \tag{2.20}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \frac{\lambda z^{3} f^{\prime \prime \prime}(z)+(2 \lambda+1) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)} \\
& =1+2(\lambda+1) a_{2} z+2\left((1+2 \lambda)\left(3 a_{3}-2 a_{2}^{2}\right)-2 \lambda^{2} a_{2}^{2}\right) z^{2}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\lambda w^{3} g^{\prime \prime \prime}(w)+(2 \lambda+1) w^{2} g^{\prime \prime}(w)+w g^{\prime}(z)}{\lambda w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)} \\
& =1-2(\lambda+1) a_{2} w+\left(2(1+2 \lambda)\left(4 a_{2}^{2}-3 a_{3}\right)-4 \lambda^{2} a_{2}^{2}\right) w^{2}+\ldots
\end{aligned}
$$

it follows from $(2.4),(2.5),(2.19)$ and (2.20) that

$$
\begin{gather*}
2(\lambda+1) a_{2}=B_{1} b_{1} \tag{2.21}\\
2(1+2 \lambda)\left(3 a_{3}-2 a_{2}^{2}\right)-4 \lambda^{2} a_{2}^{2}=B_{1} b_{2}+B_{2} b_{1}^{2} \tag{2.22}\\
-2(\lambda+1) a_{2}=B_{1} c_{1} \tag{2.23}\\
2(1+2 \lambda)\left(4 a_{2}^{2}-3 a_{3}\right)-4 \lambda^{2} a_{2}^{2}=B_{1} c_{2}+B_{2} c_{1}^{2} \tag{2.24}
\end{gather*}
$$

From (2.21) and (2.23) we get

$$
\begin{equation*}
c_{1}=-b_{1} \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
8(\lambda+1)^{2} a_{2}^{2}=B_{1}^{2}\left(b_{1}^{2}+c_{1}^{2}\right) \tag{2.26}
\end{equation*}
$$

By adding the relation (2.22) with the relation (2.24) and use (2.26) we have

$$
2\left(B_{1}^{2}\left(4 \lambda-4 \lambda^{2}+2\right)-4(\lambda+1)^{2} B_{2}\right) a_{2}^{2}=B_{1}^{3}\left(b_{2}+c_{2}\right)
$$

Now, in view of $(2.3),(2.21)$ and (2.25) we have

$$
\begin{aligned}
2\left|B_{1}^{2}\left(4 \lambda-4 \lambda^{2}+2\right)-4(\lambda+1)^{2} B_{2}\right|\left|a_{2}\right|^{2} & \leq B_{1}^{3}\left(\left|b_{2}\right|+\left|c_{2}\right|\right) \\
& \leq B_{1}^{3}\left(\left(1-\left|b_{1}\right|^{2}\right)+\left(1-\left|c_{1}\right|^{2}\right)\right) \\
& \leq 2 B_{1}^{3}\left(1-\left|b_{1}\right|^{2}\right) \\
& =2 B_{1}^{3}-8(\lambda+1)^{2} B_{1}\left|a_{2}\right|^{2}
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|2\left(2 \lambda+1-2 \lambda^{2}\right) B_{1}^{2}-4(\lambda+1)^{2} B_{2}\right|+4(\lambda+1)^{2} B_{1}}} \tag{2.27}
\end{equation*}
$$

Next, from (2.22) and (2.24), we have

$$
12(1+2 \lambda) a_{3}=B_{1}\left(b_{2}-c_{2}\right)+12(1+2 \lambda) a_{2}^{2}
$$

Then in view of (2.3) and (2.25), we have

$$
\begin{aligned}
12(1+2 \lambda)\left|a_{3}\right| & \leq 12(1+2 \lambda)\left|a_{2}\right|^{2}+B_{1}\left(\left|b_{2}\right|+\left|c_{2}\right|\right) \\
& \leq 12(1+2 \lambda)\left|a_{2}\right|^{2}+2 B_{1}\left(1-\left|b_{1}\right|^{2}\right)
\end{aligned}
$$

It follows from (2.21) that

$$
6 B_{1}(1+2 \lambda)\left|a_{3}\right| \leq\left[6 B_{1}(1+2 \lambda)-4(1+\lambda)^{2}\right]\left|a_{2}\right|^{2}+B_{1}^{2}
$$

Now from (2.27) we have

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{6(1+2 \lambda)}, & B_{1} \leq \frac{2(1+\lambda)^{2}}{3(1+2 \lambda)} \\ \frac{\left|\left(2 \lambda+1-2 \lambda^{2}\right) B_{1}^{2}-2(\lambda+1)^{2} B_{2}\right|+3(1+2 \lambda) B_{1}^{3}}{3(1+2 \lambda)\left[\left|2\left(2 \lambda+1-2 \lambda^{2}\right) B_{1}^{2}-4(\lambda+1)^{2} B_{2}\right|+4(\lambda+1)^{2} B_{1}\right]}, & B_{1} \geq \frac{2(1+\lambda)^{2}}{3(1+2 \lambda)}\end{cases}
$$

This completes the proof.
Remark 2.6. If let

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots, \quad 0<\gamma \leq 1
$$

in theorem 2.5, then inequalities (2.17) and (2.18) become

$$
\left|a_{2}\right| \leq \frac{\alpha}{\sqrt{\lambda(2+\lambda+3 \alpha \lambda)}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{\alpha}{3(1+2 \lambda)}, & \alpha \leq \frac{(1+\lambda)^{2}}{3(1+2 \lambda)} \\ \frac{\alpha(2 \alpha+\lambda(3 \alpha+\lambda))}{2 \lambda(1+2 \lambda)(1-\alpha)(1+\lambda+3 \alpha \lambda)}, & \gamma \geq \frac{(1+\alpha)^{2}}{4(1+2 \alpha)}\end{cases}
$$

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and Sh. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351.
[2] M. K. Aouf, J. Dziok and J. Sokół, On a subclass of strongly starlike functions, Appl. Math. Lett., 24(2011), 27-32.
[3] D. A. Brannan and J. G. Clunie, Aspects of Contemporary Complex Analysis, (Proceedings of the NATO Advanced Study Instute Held at the University of Durham, Durham: July 1-20, 1979), Academic Press, New York, 1980.
[4] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
[5] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
[6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[7] Z. Lewandowski, S. S. Miller and E. Zlotkiewicz, Gamma-starlike functions, Ann. Univ. Mariae Curie-Skłódowska Sect. A, 28(1974), 53-58.
[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[9] S. S. Miller, P. T. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37(1973), 553-554.
[10] P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj), 11(1969), 127-133.
[11] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32(1969), 100-112.
[12] S. Rahrovi and H. Piri, Certain subclasses of bi-univalent functions associated with the Komatu operator, Submmited paper.
[13] J. Sokól, On a condition for α-starlikeness, J. Math. Anal. Appl., 352(2009), 696-701.
[14] J. Sokół, A certain class of starlike functions, Comput. Math. Appl., 62(2011), 611619.
[15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[16] Q. H. Xu, Y. C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994.

